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Abstract

This paper proposes new stepdown methods for testing multiple hypotheses and

constructing confidence intervals while controlling the Familywise Error Rate and

other generalized error rates. One method is a refinement of Romano and Wolf’s

StepM (2005, Econometrica) that also removes inequalities that fall outside any

n−1/2-neighborhood of binding; it has the advantage that the threshold construction

is incorporated into the stepdown procedure so it accounts for the number of total

hypotheses (leading to better size control than some alternative methods) and

excludes more nonbinding inequalities (leading to higher power). This method can

also be used to test multiple inequality hypotheses simultaneously and construct

confidence intervals for partially identified parameters. The paper presents methods

for controlling the k-familywise error rate and the False Discovery Proportion for

families of one and two-sided hypotheses as well. The paper also provides Monte

Carlo evidence that the methods perform well in finite samples and demonstrates

their application in an empirical analysis of hedge fund returns.
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1 Introduction

This paper develops improvements to sequential procedures for testing multiple hy-

potheses. Many existing procedures can lose power when some of the individual null

hypotheses hold with parameter values that are far from the alternative—the multiplicity

correction is then unnecessarily large and decreases the procedure’s power to reject

other, false, hypotheses. The canonical example of this problem is testing many one-sided

hypotheses (see Hansen, 2005, as well as Andrews, 2012, and Hirano and Porter, 2012,

for recent assessments of these issues), but our main contribution is for statistics that

control other generalized error rates—the k-Familywise Error Rate (k-FWE) and the

False Discovery Proportion (FDP)—and we present settings where this issue also arises

for two-sided hypotheses.

For concreteness, suppose that each hypothesis s is of the form θs ∈ Θ0 vs. θs ∈ Θa

and has corresponding test statistic Ts; Ts rejects if it is above some critical value q and

the procedure controls the familywise error rate (FWE) at level α if

Pr[Ts > q for at least one s such that θs ∈ Θ0]≤ α (1)

(we focus on the FWE in this example for simplicity but will present results for other

error rates later in the paper; see Section 3). FWE control is stronger than control of the

size of the composite hypothesis θs ∈ Θ0 for all s, since it must hold for any arrangement

of θs. This stronger concept is essential if a researcher wants to interpret individual

rejections (Ts > q) as evidence against the individual hypotheses (θs ∈ Θ0).

“Single-step” procedures construct a critical value q1 to control FWE at α and then

reject all of the individual hypotheses with Ts > q1. A sequential procedure (as in Holm,

1979) continues from there by constructing a second critical value q2 to control FWE at

α for the family of hypotheses left after the first step, {s : Ts ≤ q1}, and then rejects all of

the hypotheses with Ts > q2. The sequential procedure then continues in the same way,

constructing each critical value to control FWE over the remaining hypotheses, until it

stops rejecting at, say, the jth step. Somewhat surprisingly, using q = q j in (1) typically

controls the FWE at α. (Subject to natural restrictions on the test procedure, of course;

see Holm, 1979, Romano and Wolf, 2005a,b, and Goeman and Solari, 2010, among

others.)

This paper’s method works by identifying subsets of the null, Θ′ ⊂ Θ0, where the

probability that Ts rejects if θ ∈ Θ′ is negligible. Instead of testing θs ∈ Θ0 against θs ∈ Θa
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at level α in each step, we also simultaneously test θs ∈ Θ0 \Θ′ vs. θs ∈ Θ′ at level ε (an

arbitrarily small positive quantity).We remove hypothesis s if either test rejects and then

proceed sequentially. As ε converges to zero, the FWE of this procedure converges to

α. Of course, at the end we only reject those hypotheses that were determined to be

in Θa (i.e. Ts is greater than the last q j), but removing the additional hypotheses in Θ′

during the sequential process can increase the method’s power, sometimes dramatically,

resulting in more rejections. Each step of our procedure is similar to the Bonferroni

correction proposed by McCloskey (2012) and Romano et al. (2012), but extending

these results to ε ≈ 0 can be very useful in practice, especially for more complicated

error measures.

Section 2 uses this principle to improve Romano and Wolf’s (2005a) StepM procedure

and increase its power for families of one-sided hypotheses. The StepM, like White’s

(2000) Bootstrap Reality Check (BRC) and Hansen’s (2005) test of Superior Predictive

Ability (SPA), uses the bootstrap to approximate the joint distribution of the test statistics

for each hypothesis, and so obtains higher power than methods that assume a worst-case

dependence structure (Holm, 1979, for example) and more general validity than those

that assume a convenient dependence structure. Romano and Wolf (2005a) improve on

White (2000) and Hansen (2005) by incorporating an iterative stepdown method as

described above; White (2000) and Hansen (2005) propose single step procedures. Our

refinement amounts to using a heavily asymmetric two-sided version of the StepM and

removing hypotheses far from the boundary between the null and the alternative in either

direction, but then, after the sequential procedure stops, only rejecting the hypotheses

that violate the null. This refinement is similar to existing procedures—Hansen (2005)

proposes discarding the hypotheses with corresponding t-statistics below −
p

2 log log n

before using the BRC for the null hypotheses θs ≤ 0, a threshold motivated by the Law

of the Iterated Logarithm, and Hsu et al. (2010) propose the same procedure for the

StepM—but our threshold accounts for the number of hypotheses, giving it better size

control in finite samples. Simulations presented in Section 4 show that Hansen’s (2005)

and Hsu et al.’s (2010) test can overreject in practice.

Section 2 also shows how to apply this procedure to test composite null hypotheses

with several inequality restrictions (Corollary 1), and how to apply that result to the

partial identification problem considered by Imbens and Manski (2004) (Remark 6). More

simulations presented in Section 4 show that our procedure has roughly equal power

to Andrews and Barwick’s (2012a) preferred statistic (their AQLR) and to McCloskey’s
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(2012) and Romano et al.’s (2012) procedures to detect at least one violation of the

inequalities. As mentioned earlier, our procedure (as well as McCloskey’s, 2012, and

Romano et al.’s, 2012) has the advantage of also controlling FWE, so the individual

rejections can be taken as evidence against the individual hypotheses—in contrast,

Andrews and Barwick’s (2012a) AQLR only tells the researcher that one or more of the

inequalities does not hold, but not which one. Our method has the further advantage that

it will typically reject more of the individual false hypotheses than McCloskey’s (2012)

and Romano et al.’s (2012), even though the probabilities of rejecting the composite

null hypothesis are roughly equal.

Section 3 applies the same concepts to procedures that control other generalized

error rates, namely the k-FWE and the FDP. These error rates can be used when FWE is

too demanding a measure to be useful. In such situations, the researcher may be willing

to allow for a few false rejections (k-FWE), or allow for a known percentage of the total

rejections to be false (FDP, but see Section 3 for formal definitions of these terms). We

show that the same ideas apply as before and present refinements to Romano and Wolf’s

(2007) k-StepM—a sequential procedure designed to control these error rates—that can

require substantially fewer calculations while maintaining uniform control of their error

rates. In addition to corrections for one-sided testing, we also present new restrictions

that are implied by the error rates themselves and apply to families of two-sided tests as

well.

Sections 2 and 3 lay out our theory as described above. Section 4 presents Monte

Carlo simulations studying the behavior of our procedure and several competing methods

in finite samples. Section 5 uses our new statistics to study hedge fund performance

from 1994 to 2012, and Section 6 concludes.

2 Testing families of one-sided hypotheses with FWE

control

Consider the following environment. Suppose that there are S null hypotheses Hs : θs ≤ 0

against the alternatives H ′s : θs > 0, let θ̂ = (θ̂1, . . . , θ̂S) be an estimator of θ , and let

I = {s ∈ {1, . . . , S} : θs ≤ 0} index the true null hypotheses. A critical value q that
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controls FWE at level α satisfies

Pr[θ̂s > q for at least one s ∈ I]≤ α. (2)

(We will deal with studentized statistics in the actual results, but (2) is presented with

unstudentized statistics for simplicity.) This is a more stringent criterion than controlling

the probability that (2) holds only when I = {1, . . . , S}, which would be the focus if this

were a test of the composite null hypothesis.1

We will derive our results under the following high-level assumption.

Assumption 1. For any sequence of parameter values {θn},
p

n (θ̂−θn)→d N(0, V ) where

V is positive semi-definite with uniformly positive diagonal elements and (v̂2
1 , . . . , v̂2

S )
′→p

diag(V ). Moreover, let F̂n be an estimator of the distribution of

(
p

n(θ̂1 − θ1n)/v̂1, . . .
p

n(θ̂S − θSn)/v̂S))

such that F̂n→d N(0, W ), where W is the asymptotic correlation matrix of
p

nθ̂ .

In the main text of the paper, we suppress the dependence of θ on n to simplify

the notation, but we will make that dependence explicit in the proofs. Typically the

distribution F̂ can be estimated with the bootstrap, and it will be useful to define a random

vector ψ̂∗ that is distributed as F̂n. We assume asymptotic normality to simplify the

presentation and the proofs, but it is not essential. Moreover, we work with studentized

statistics to improve the procedure’s performance (see Hansen, 2005, and Romano and

Wolf, 2005a,b, 2010, among many others) but that assumption can be relaxed.

Algorithm 1 presents our approach, a variation of the StepM, for generating q.

Theorem 1 then shows that this value of q controls the FWE in the sense of (2).

Algorithm 1 (StepM variation for one-sided tests). Set M0 = {1, . . . , S}, α ∈ (0, 1), and

ε ∈ (0,α). Repeat the listed steps for each j = 1, 2, . . . and stop when M j = M j−1 or M j = ;.

1. Set p j to be the ε quantile of the distribution of mins∈M j−1
ψ̂∗s .

2. Set q j to be the 1−α quantile of the distribution of maxs∈M j−1
ψ̂∗s .

3. Set M j = {s :
p

n θ̂s/v̂s ∈ [p j, q j]}.

1This less stringent criterion is often referred to as weak control of the familywise error rate.
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Let q be the last q j when the algorithm stops.

Remark 1. An informal description of the algorithm may be useful. This procedure

begins by testing the wrong null hypotheses, θs ≥ 0, at an arbitrarily small level ε. The

critical value for this test is p1 and this critical value accounts for multiplicity—when

more hypotheses are considered, p1 will tend to move further away from zero. The

hypotheses rejected at this stage, corresponding to statistics with
p

nθ̂s/v̂s < p1, are

not rejected by the algorithm, since the parameter estimates satisfy the correct null

hypothesis. But they are so far from the boundary between the null and the alternative

that including them further would degrade the power of the test procedure without

improving its size, so they are set aside and ignored in future steps.

In the second step, the procedure tests the correct null hypotheses, θs ≤ 0, at the

correct level, α, for the remaining parameters. The critical value for this second test is

q1 and, as before, this critical value accounts for multiplicity.2 Hypotheses rejected at

this stage are rejected by the algorithm and are set aside.

In the third step, the set of parameters under consideration is shrunk: only parameters

that were not rejected by either of the first two steps will be considered in the future;

the rest are temporarily set aside. If the first two steps had no rejections, the procedure

ends without rejecting any hypotheses. If either of the first two steps rejected one or

more hypotheses, the procedure continues to try to reject more hypotheses by repeating

steps 1 and 2 over the smaller subset of remaining hypotheses.

The algorithm stops when it has stopped removing hypotheses in either step 1 or step

2, or when there are no hypotheses remaining. After stopping, adds all of the parameters

removed at any point in step 1 to the set of “accepted” hypotheses, and rejects the

hypotheses that were rejected at any point by step 2.

Remark 2. Readers familiar with the StepM may notice that we have omitted several

steps related to sorting and reordering the test statistics. Sorting the statistics can be

important for efficiently implementing the StepM, but it is not necessary for Romano and

Wolf’s (2005a) theoretical results or for ours. We have omitted these steps to simplify

the presentation here, but interested readers should look to our computer code for more

efficient implementations of the procedures described in this paper.

2In fact, this critical value overcorrects for multiplicity, since it does account for the hypotheses removed
in step 1. This is not a problem, though, because the procedure is iterative, and the critical values will be
updated in the next iteration.
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Theorem 1 establishes that the q produced by Algorithm 1 asymptotically controls

FWE when ε is small.

Theorem 1 (FWE control for one-sided hypotheses). Suppose Assumption 1 holds and

choose α ∈ (0, 1). For any ε < α, let q(ε) denote the last q j in Algorithm 1. Then

limsup
n→∞
ε→0

sup
θ∈RS

Prθ [
p

n θ̂s/v̂s > q(ε) for at least one s such that θs ≤ 0]≤ α. (3)

Moreover, if εδ is a sequence of random variables s.t. εδ→p 0 as δ→ 0 then

limsup
n→∞
δ→0

sup
θ∈RS

Prθ [
p

n θ̂s/v̂s > q(εδ) for at least one s such that θs ≤ 0]≤ α. (4)

Remark 3. To implement this method, we must set ε. If the quantiles are estimated

with a bootstrap, ε can be set arbitrarily small by using the minimum of the bootstrap

replications for p j:

p j = min
b=1,...,B

min
s∈M j−1

ψ̂∗bs

where ψ̂∗bs is the sth element of the vector ψ̂∗b and ψ̂∗1, . . . , ψ̂∗B are the bootstrap replica-

tions. This construction implies that ε→p 0 as B→∞ and so p j →−∞ in probability

(slowly) as n→∞ and B→p∞. (And is why we explicitly allow ε to be random.)

This method of setting p j is used in the empirical section and Monte Carlo simulations

later in the paper.

Remark 4. One could use larger values of ε by setting each q j to be the 1−α+ε quantile

of the distribution of maxs∈M j−1
ψ̂∗s . There are advantages to either approach — explicitly

allowing ε to remain positive in the limit would allow us to derive the value of ε that

gives the most expected rejections. But using the 1−α+ ε quantile raises the possibility

that, in some applications, the correction for one-sided tests may reject fewer hypotheses

than a naive implementation of the uncorrected StepM — i.e., if step 1 of the algorithm

does not remove any hypotheses, then testing at 1−α+ ε in the second step will always

have less power than a test that skips the first step and tests at 1−α in the second step.

Choosing ε to be nearly zero removes this risk.

In the more complicated algorithms presented later in the paper, we will also find

that choosing ε to be nearly zero makes the procedures much simpler. Moreover, we
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present our main results for the 1 − α quantile to emphasize that ε should be very

small in practice — small enough that the 1−α+ ε quantile and the 1−α quantile are

essentially the same. Otherwise our approach can have size distortions in finite samples.

We set ε = 0 in all of the computations in this paper, which follows the recommendation

in Remark 3 because the “0th quantile” of a vector returns its smallest element in many

statistical packages, including R (R Development Core Team, 2012), the package used

here.

Remark 5. This procedure differs from Romano and Wolf’s (2005a) StepM in the p j

term—if we set p j = −∞ they are the same. This term fills the same role as Hansen’s

(2005) and Hsu et al.’s (2010) threshold, and if we set p j = −
p

2 log log n our algorithm

becomes Hsu et al.’s (2010). Even though Hsu et al.’s (2010) threshold explicitly depends

on n and diverges to −∞ as n grows, p j will typically be substantially farther from zero

than −
p

2 log log n because it explicitly accounts for the number of hypotheses (and
p

log log n grows very slowly). This has size implications that can cause Hansen’s (2005)

and Hsu et al.’s (2010) statistics to overreject, as shown in Section 4.

Although the focus of this paper is on testing many individual hypotheses, the

algorithm in Theorem 1 also provides an attractive test statistic for joint tests of several

inequality restrictions. Corollary 1 formalizes this application.

Corollary 1 (Testing composite one-sided hypotheses). Under the assumptions of Theo-

rem 1,

limsup
n→∞
ε→0

sup
θ≤0

Prθ [max
s

p
n θ̂s/v̂s > q(ε)]≤ α (5)

and

limsup
n→∞
δ→0

sup
θ≤0

Prθ [max
s

p
n θ̂s/v̂s > q(εδ)]≤ α. (6)

For both results, θ ≤ 0 holds element by element.

Remark 6. Theorem 1 and Corollary 1 apply to many settings where the parameter of

interest is only partially identified. As an example, consider Imbens and Manski’s (2004)

missing data problem: (Yi, Wi) is an i.i.d. sequence for i = 1, . . . , n; Wi is Bernoulli; and

Yi is bounded between 0 and 1 a.s. and is observed only when Wi = 1. The parameter of
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interest is E Yi which must satisfy

E Yi ≥ E(Yi |Wi = 1)Pr[Wi = 1]

E Yi ≤ E(Yi |Wi = 1)Pr[Wi = 1] + (1− Pr[Wi = 1]).
(7)

All of the quantities in (7) can be estimated from the data; the lower bound comes from

setting E(Yi |Wi = 0) = 0 and the upper bound from E(Yi |Wi = 0) = 1. Note that E Yi

can not be estimated consistently without further assumptions on the distribution of Yi

given Wi = 0, assumptions that may be unrealistic if individuals self-select into the data

set, but researchers can still estimate valid confidence intervals and conduct hypothesis

tests without such assumptions.

To use Corollary 1 to test E Yi = µ0 for some value µ0, we can define

θ1 ≡ E(Yi |Wi = 1)Pr[Wi = 1]−µ0

θ2 ≡ µ0 − E(Yi |Wi = 1)Pr[Wi = 1]− (1− Pr[Wi = 1]),
(8)

so (7) becomes (θ1,θ2)≤ (0, 0). Also define

θ̂1 = (1/n)
n
∑

i=1

Yi 1{Wi = 1} −µ0

θ̂2 = µ0 − (1/n)
n
∑

i=1

Yi 1{Wi = 1} −
�

1− (1/n)
n
∑

i=1

1{Wi = 1}
�

.

(9)

Assuming Pr[Wi = 1] is bounded away from zero (as do Imbens and Manski, 2004)

and standard moment and dependence conditions, each
p

n(θ̂i − θi) is asymptotically

normal under the null and Corollary 1 applies, even if Pr[Wi = 1] is near 1 (addressing

the concern raised by Stoye, 2009).

Confidence intervals for E Yi can be constructed by inverting these hypothesis tests

as usual. Notice that, when the gap between θ̂1 and θ̂2 is large, the confidence interval

will be based on the distribution of only the closest θ̂i since the other inequality will be

rejected with very high probability in the first stage, but when the gap is small the interval

will use the distributions of both estimators, so our approach matches the key features

of Imbens and Manski’s (2004) statistic. Our approach has the additional advantage

that it can be trivially extended to multivariate Yi—let θ̂1 and θ̂2 be vectors and let (9)

apply to each of their elements.
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Remark 7. Note that the algorithm should continue as long as it removes inequalities

because the corresponding statistic is lower than p j; removing these inequalities lowers

the next upper bound, q j+1. Obviously, there is no need to continue the algorithm once

an individual statistic is greater than q j when testing the composite null. However, if the

researcher wants to interpret the individual rejections as well, continuing to reject as

many hypotheses as possible (while still controlling FWE) is probably appropriate. See

the next remark as well.

Remark 8. Our Monte Carlo section, Section 4, shows that our procedure has comparable

power to tests designed specifically for the composite null hypothesis (as studied by,

for example, Andrews and Barwick, 2012a). Although there are theoretical reasons

to believe that those dedicated tests may have a power advantage in principle, there

is another reason to prefer tests that control FWE, even if they suffer a slight power

disadvantage: interpretation of the results. We can interpret the individual rejections to

learn which inequalities are violated if the test controls FWE, but not if it only controls

size for the composite null. If the test recommended by Andrews and Barwick (2012a)

rejects we do not learn which inequalities fail, but if our test rejects, we do.

3 Tests that control generalized error rates for families

of one-sided and two-sided hypotheses

In some applications, tests that control FWE lack sufficient power and it may be appro-

priate to control a weaker measure of the error rate. In this section, we show how to

apply the principles of the previous section to stepdown methods that control two such

measures, the k-FWE and the False Discovery Proportion. We first consider k-FWE, a

straightforward extension of the FWE. A critical value that controls k-FWE at level α

satisfies

Pr[θ̂s ≥ q for at least k values of s such that θs ≤ 0]≤ α (10)

for one-sided tests or

Pr[|θ̂s| ≥ q for at least k values of s such that θs = 0]≤ α (11)
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for two-sided tests. (As before, (10) and (11) use unstudentized statistics for simplicity,

but our results will use studentized statistics for improved performance.)

Stepdown procedures that control k-FWE face some new difficulties. By design, they

continue to run after rejecting true hypotheses, so each step after the first operates

under the assumption that some true hypotheses have been rejected, but fewer than k

(meaning that the previous steps did not violate (10) or (11)). In Romano and Wolf’s

(2007) k-StepM procedure, separate critical values are generated using every subset

that contains k− 1 of the rejected hypotheses, and then the most conservative (largest)

of those critical values is used for that step of the test. Even if k is relatively small (5 or

6) taking these combinations can be computationally costly.

Our algorithm improves on the k-StepM by ignoring the statistics so large that

they would occur with negligibly small probability under the null. It also partitions

the alternative space, further restricting the combinations of k− 1 elements that must

be calculated, by estimating the distribution of the ith largest θ̂s under the null, for

every i = 1, . . . , k. Intuitively, if both θ̂1 and θ̂2 are larger than the upper bound for

the second-largest test statistic, combinations that include both s = 1 and s = 2 can be

ignored.

First we present an algorithm for two-sided tests. Define the k-max operator to return

the kth largest of its arguments and let #A denote the number of elements in a set A.

Algorithm 2 (k-StepM variation for two-sided tests). Set M0 = {1, . . . , S}, R0 = {;},
α ∈ (0, 1), and εi ∈ (0,α) for i = 1, . . . , k−1. Repeat the following steps for each j = 1, 2, . . .

and stop when M j = ; or (M j, N1 j, . . . , Nk−1, j) = (M j−1, N1, j−1, . . . , Nk−1, j−1).

1. Set ri j =maxI∈R j−1
ρi j(I) for i = 1, . . . , k− 1, where ρi j(I) is the 1− εi quantile of

the distribution of i-maxs∈M j−1∪I |ψ̂∗s |.

2. Set q j =maxI∈R j−1
qI j, where qI j is the 1−α quantile of the distribution of

k-maxs∈M j−1∪I |ψ̂∗s |.

3. Set M j = {s : |
p

n θ̂s/v̂s| ≤ q j},

Ni j =







{s : |
p

n θ̂s/v̂s| ∈ (ri+1, j, r1 j]} i = 1, . . . , k− 2

{s : |
p

n θ̂s/v̂s| ∈ (q j, r1 j]} i = k− 1

and R j = {I ⊂ Nk−1, j : #(I ∩ Ni j)≤ i for i = 1, . . . , k− 1}.
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Let q be the last q j when the algorithm stops.

Theorem 2 establishes that this algorithm is valid for very small values of ε.

Theorem 2 (k-FWE control for two-sided hypotheses). Suppose Assumption 1 holds

and choose α ∈ (0,1). For any ε= (ε1, . . . ,εk−1)′, let q(ε) denote the last q j produced by

Algorithm 2. Then

limsup
n→∞
ε→0

sup
θ∈RS

Prθ [|
p

n θ̂s/v̂s|> q(ε)

for at least k values of s such that θs = 0] ≤ α. (12)

Moreover, if εδ is a sequence of random variables such that εδ→p 0 as δ→ 0 then

limsup
n→∞
δ→0

sup
θ∈RS

Prθ [|
p

n θ̂s/v̂s|> q(εδ)

for at least k values of s such that θs = 0] ≤ α. (13)

Remark 9. As in Remark 3, if F̂n is estimated with a bootstrap, we can often set ri j as

ri j =







maxb=1,...,B maxs∈M0
i-max |ψ̂∗bs| j = 1, i = 1, . . . , k− 1

maxb=1,...,B maxI∈R j−1
i-maxs∈M j−1∪I |ψ̂∗bs| j > 1, i = 1, . . . , k− 1

where ψ̂∗1s, . . . , ψ̂∗Bs are the bootstrap replications of the test statistic for the sth hypothesis.

Again, this is the procedure we recommend in practice.

As with Algorithm 1, we could allow the εi to remain positive in the limit by using

the 1−α+
∑

i εi quantile for q j.

Remark 10. As in most sequential algorithms, it is sufficient to show that each step of

the algorithm controls the error rate only when all of the previous steps have already

done so. So, for j > 1, we can assume that fewer than k true null hypotheses have

been rejected in the previous steps. In Romano and Wolf’s (2007) original proof, the

outer maximum corresponding to our step 2 is taken over all sets I of size k− 1, where

I ⊂ {s : |
p

n θ̂s/v̂s|> q j−1} (in our notation). The set of these I is potentially much larger

than our R j−1, reducing power and lengthening computational time.

We can use a smaller set because R j−1 removes the combinations that only occur

with negligible probability under the null. For example, r1 j is essentially an upper bound
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on max |
p

n θ̂s/v̂s| under the null and r2 j is essentially an upper bound on the second

largest |
p

n θ̂s/v̂s| under the null. So at most one true hypothesis can have its test statistic

between r1, j−1 and r2, j−1 and we can ignore all combinations that include the indices of

two or more statistics between r1, j−1 and r2, j−1. The justification for the other bounds is

the same.

Typically, the most useful restriction will be that statistics greater than ri1 can be

rejected and ignored—none of the sets in R j−1 contain the indices of those statistics.

Remark 11. We can also compare this approach to the streamlined algorithm proposed

by Romano and Wolf (2007) (their Algorithm 2.2) which restricts R j even further. In our

notation, they propose using R j that contains a single set with the indices of the k− 1

smallest test statistics. This choice of R j will increase power and decrease computational

costs even further, but is valid asymptotically only if the parameters are far from zero

under the alternative. If some of the parameters are local alternatives, there is no

guarantee that their approach will generate a valid critical value, but ours will.

This algorithm can of course be modified for one-sided tests by adding the threshold p j

used in Theorem 1 (i.e. excluding those statistics that are too far below zero). Algorithm 3

presents this result.

Algorithm 3 (k-StepM variation for one-sided tests). Set M0 = {1, . . . , S}, R0 = {;}, and

α ∈ (0, 1), and εi ∈ (0,α) for i = 1, . . . , k. Repeat the following steps for each j = 1, 2, . . .

and stop when M j = ; or (M j, N1 j, . . . , Nk−1, j) = (M j−1, N1, j−1, . . . , Nk−1, j−1).

1. Set ri j =maxI∈R j−1
ρi j(I) for i = 1, . . . , k− 1, where ρi j(I) is the 1− εi quantile of

the distribution of i-maxs∈M j−1∪I |ψ̂∗s |.

2. Set p j =minI∈R j−1
pI j, where pI j is the εk quantile of the distribution of

mins∈M j−1∪I ψ̂
∗
s .

3. Set q j =maxI∈R j−1
qI j, where qI j is the 1−α quantile of the distribution of

k-maxs∈M j−1∪I |ψ̂∗s |.

4. Set M j = {s :
p

n θ̂s/v̂s ∈ [p j, q j]},

Ni j =







{s :
p

n θ̂s/v̂s ∈ (ri+1, j, r1 j]} i = 1, . . . , k− 2

{s :
p

n θ̂s/v̂s ∈ (q j, r1 j]} i = k− 1
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and R j = {I ⊂ Nk−1, j : #(I ∩ Ni j)≤ i for i = 1, . . . , k− 1}.

Let q be the last q j when the algorithm stops.

Theorem 3 (k-FWE control for one-sided hypotheses). Suppose Assumption 1 holds

and choose α ∈ (0,1). For any ε = (ε1, . . . ,εk)′, let q(ε) denote the last q j produced by

Algorithm 3. Then

limsup
n→∞
ε→0

sup
θ∈RS

Prθ [
p

n θ̂s/v̂s > q(ε)

for at least k values of s such that θs ≤ 0] ≤ α. (14)

If εδ is a sequence of random vectors s.t. εδ→p 0 as δ→ 0 then

limsup
n→∞
δ→0

sup
θ∈RS

Prθ [
p

n θ̂s/v̂s > q(ε)

for at least k values of s such that θs ≤ 0] ≤ α. (15)

Remark 12. Note that the parameters estimated to be far below the binding inequality

are removed and do not enter as elements of I ⊂ R j or M j. Just as before, this modification

increases the test’s power.

Remark 13. If F̂n is estimated with a bootstrap, we can often use

p j =







minb=1,...,B mins∈M0
ψ̂∗s j = 1

minb=1,...,B minI∈R j−1
mins∈M j−1∪I ψ̂

∗
s j > 1

and

ri j =







maxb=1,...,B i-maxs∈M0
ψ̂∗bs j = 1, i = 1, . . . , k− 1

maxb=1,...,B i-maxI∈R j−1
i-maxs∈M j−1∪I ψ̂

∗
bs j > 1, i = 1, . . . , k− 1

where, again, ψ̂∗1s, . . . , ψ̂∗Bs are the bootstrap replications of the test statistic for the sth

hypothesis (also see Remarks 3 and 9).

We now turn to the second generalized error rate, the False Discovery Proportion
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(FDP). A critical value q controls FDP at level α if it satisfies

Pr

�

#{s : |θ̂s| ≥ q and θs = 0}
max(1,#{s : |θ̂s| ≥ q})

> γ

�

≤ α (16)

for two-sided tests or

Pr

�

#{s : θ̂s ≥ q and θs ≤ 0}
max(1,#{s : θ̂s ≥ q})

> γ

�

≤ α (17)

for one-sided tests, for γ determined by the researcher in advance; i.e. it controls the

probability that a predetermined percentage of the rejections are incorrect. As shown

by Lehmann and Romano (2005), procedures that control k-FWE can be used to build

procedures that control FDP. Suppose that a test that controls k-FWE at level α rejects

N hypotheses. If N > k/γ, then Pr[k/N > γ] ≤ α and FDP is controlled at level α as

well. So one can proceed sequentially in k, starting with k = 1, then 2, etc., stopping

when N ≤ k/γ. Corollary 2 demonstrates how to extend the Algorithms 2 and 3 to this

application.

Corollary 2 (FDP control). Suppose Assumption 1 holds and take α,γ ∈ (0, 1).

1. (One-sided hypotheses): Apply Algorithm 3 sequentially at level α with k = 1, 2, . . .

producing a sequence of critical values qk(ε), and stop at the first k with

k/γ≥ #{s :
p

n θ̂s/v̂s > qk(ε)}. (18)

Let q(ε) denote the last qk(ε). Then

limsup
n→∞
ε→0

sup
θ∈Rn

Prθ

�

#{s :
p

n θ̂s/v̂s > q(ε) and θs ≤ 0}
max(1,#{s :

p
n θ̂s/v̂s > q(ε)})

> γ

�

≤ α. (19)

If εδ is a sequence of random variables s.t. εδ→p 0 as δ→ 0 then

limsup
n→∞
δ→0

sup
θ∈Rn

Prθ

�

#{s :
p

n θ̂s/v̂s > q(εδ) and θs ≤ 0}
max(1,#{s :

p
n θ̂s/v̂s > q(εδ)})

> γ

�

≤ α (20)

as well.

2. (Two-sided hypotheses): Apply Algorithm 2 sequentially at level α with k = 1, 2, . . .
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producing a sequence of critical values qk(ε), and stop at the first k with

k/γ≥ #{s : |
p

n θ̂s/v̂s|> qk(ε)}. (21)

Let q(ε) denote the last qk(ε). Then

limsup
n→∞
ε→0

sup
θ∈Rn

Prθ

�

#{s : |
p

n θ̂s/v̂s|> q(ε) and θs = 0}
max(1,#{s : |

p
n θ̂s/v̂s|> q(ε)})

> γ

�

≤ α. (22)

If εδ is a sequence of random variables s.t. εδ→p 0 as δ→ 0 then

limsup
n→∞
δ→0

sup
θ∈Rn

Prθ

�

#{s : |
p

n θ̂s/v̂s|> q(εδ) and θs = 0}
max(1,#{s : |

p
n θ̂s/v̂s|> q(εδ)})

> γ

�

≤ α. (23)

Remark 14. The computational improvements of our algorithm are especially important

when controlling FDP since k grows. To further reduce computational costs, step k+ 1

can be started where step k left off: if r ′1, . . . , r ′k−1 and p′ denote the last values of

r1 j, . . . , rk−1, j and p j at step k, we can set ri1 = r ′i and p1 = p′ for step k+ 1.

Remark 15. Note that steps can sometimes be skipped: if

(k+m)/γ < #{s : |
p

nθ̂s/v̂s|> qk}

then we can go immediately to k+m+ 1 instead of k+ 1.

Remark 16. If the computational costs become overwhelming, the algorithm can be

stopped early. It still controls FDP at the prespecified levels, but obviously sacrifices some

power. Since the computational costs grow with the number of hypotheses rejected, this

scenario will come into play when many hypotheses have already been rejected and the

loss of power may be acceptable.

4 Monte Carlo evidence

For a sense of the finite sample performance of our tests we present simulations for

several different DGPs based loosely on Romano and Wolf’s (2005a) Monte Carlo design.

We study the performance of three of our procedures: the StepM modification for one-

sided tests derived in Theorem 1, the k-StepM modification for one-sided tests described
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in Theorem 3, and the test of composite one-sided nulls described in Corollary 1. All of

these simulations were programmed in R (R Development Core Team, 2012) and use

the MASS (Venables and Ripley, 2002), xtable (Dahl, 2012), dbframe (Calhoun, 2010),

RSQLite (James, 2012), R.Matlab (Bengtsson, 2013), and Combinations (Temple Lang,

2010) packages.

The Monte Carlo design is fairly basic: θs = E X s,t −E Yt for s = 1, . . . , S. For design 1,

s = 2 and






X1t

X2t

Yt






∼ i.i.d.N













1

1

1






,







2 0 1

0 2 1

1 1 1












. (24)

This covariance structure ensures that X̄1,· − Ȳ and X̄2,· − Ȳ are perfectly negatively

correlated and this design is used to study size distortions in these procedures. This

DGP also mimics the partial-identification setting of Imbens and Manski (2004) — see

Remark 6. For designs 2–6, S = 40 and

(X1,t , . . . , X40,t , Yt)∼ N(µ, diag(1, 2,1, 2, . . . , 2, 1)). (25)

And for designs 7–9, S = 4 and

(X1,t , . . . , X4,t , Yt)∼ N(µ, I). (26)

Designs 1–6 are used for the multiple-testing simulations and designs 7–9 are used for

the composite null hypotheses (one of the comparison methods, Andrews and Barwick’s,

2012a, is computationally infeasible for 40 inequalities, so we drop the number). The

mean, µ, is determined by the DGP; E Yt = 1 for all of the simulations, so E X i,t takes on

different values. Table 1 presents these different possible values.

The first Monte Carlo compares procedures that control FWE. It studies the size and

power of Romano and Wolf’s (2005a) StepM, Hsu et al.’s (2010) Step-SPA, and the our

refinement of the StepM. The Step-SPA is a variation of Romano and Wolf’s (2005a)

StepM that initially discards the null hypotheses s for which θ̂s/σ̂s ≤ −
p

2 log log n,

a threshold suggested by Hansen’s (2005). All results are based on 1000 simulations

and critical values are estimated using the i.i.d. bootstrap with 999 bootstrap samples,

and use DGP designs 1–6. The lower thresholds, p j, are set as the minimum of the
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bootstrap replications as suggested in Remark 3. The tests have nominal FWE of 5%,

but simulations at 10% and 1% show similar patterns.

The second Monte Carlo compares procedures that control k-FWE with k = 3; it

uses Romano and Wolf’s (2007) k-StepM and our refinement presented in Theorem 2.

The simulations use DGP designs 2–6 (the same as the first Monte Carlo, except that

design 1 has fewer than k total hypotheses and is dropped) and the results are again

based on 1000 simulations using an i.i.d bootstrap with 999 bootstrap samples, and the

thresholds are set as in Remark 13 The nominal k-FWE is 5%.

The third Monte Carlo studies tests of composite null hypotheses: Andrews and

Barwick’s (2012a) AQLR and McCloskey’s (2012) and Romano et al.’s (2012) Bonferroni-

based procedures in addition to our method described in Corollary 1; Andrews and

Barwick (2012a) conduct an extensive simulation study in which they demonstrate

that the AQLR performs better than many other recent tests of the composite null; see

their paper for further discussion and comparisons. The Bonferroni-based method is

a two-step procedure: it first conducts a one-sided test of the null θs ≥ 0 for each s at

level α/10, then constructs the α · 9/10 one-sided critical value for the null θs ≤ 0 for

all s not rejected in the first-stage test. The procedure rejects if any of the test statistics

are greater than this critical value, which can be approximated through the bootstrap.

These simulations use DGP designs 7–9 for computational feasibility; the results are

based on 1000 simulations and our method and the Bonferroni procedure both use 999

bootstrap samples. The AQLR is implemented using Matlab code provided by Andrews

and Barwick (2012a,b) with their recommended settings, which is called from R via

R.Matlab (Bengtsson, 2013). The nominal size for these tests is 5% and the lower

threshold is again set as in Remark 3.

Table 2 presents the results for the FWE experiment and strongly supports this

paper’s new approach. Both the StepM and our refinement control FWE reliably, but

the Step-SPA overrejects when there is a small number of equal-performing models—in

simulation 1 it overrejects by almost 5 percentage points for 50 observations and 2.3

percentage points for 100 observations (note that the Step-SPA is equivalent to Hansen’s

original SPA in this experiment since all of the null hypotheses are true). For DGPs with

no under-performing models (DGPs 1–3, and 5) our new procedure performs essentially

the same as the StepM in terms of FWE and power. When some models under-perform

(DGPs 4 and 6), the new method identifies more incorrect null hypotheses than the

original. For example, in DGP 4 with 100 observations, Romano and Wolf’s (2005a)
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test finds on average 2.1 false hypotheses while this paper’s test finds 4.1 out of 6, a

substantial improvement; for 50 observations, the StepM finds 0.7 false hypotheses on

average and this paper’s test finds 2.0. Our method and the Step-SPA have basically the

same power, but our method avoids over-rejecting when the inequalities bind.

Table 3 presents results for the k-FWE experiment, which again favor our approach.

Our method and the k-StepM control the k-FWE at essentially identical (and correct)

rates and when none of the models underperform the methods have almost identical

power. But when some models do underperform, our method correctly rejects substan-

tially more hypotheses. For example, in DGP 6 with 100 observations, our method

rejects 4 more statistics (16.4 vs. 12.5) with identical control of k-FWE. The relative

performance in other DGPs is similar.

Finally, Table 4 presents results for the size experiment. Here all of the methods

perform about the same. All have estimated size slightly less than nominal size, but

without cause for concern. And all of the statistics have nearly identical power when

there are false hypotheses. As mentioned in Remark 8, an advantage of our statistic

(and the Bonferroni-based statistic) is that researchers are justified in interpreting the

individual statistic-by-statistic test results, while the AQLR does not. These simulations

indicate that the power loss from taking this approach may be very small, the numbers

are virtually identical, which makes our statistic more attractive.

Taken collectively, these simulations show that our improvements lead to substantially

more powerful tests in the multiple testing scenario that they were designed for, and

also perform roughly as well as specialized (and complicated) statistics like the AQLR

for testing composite null hypotheses.

5 An analysis of hedge fund performance

To demonstrate this paper’s new approach on a real dataset, we conduct an empirical

study of hedge funds similar to Romano and Wolf (2005a) and Romano et al. (2008),

but controlling the FDP. It is well known that accounting for data-snooping is particu-

larly important when analyzing investment strategies since many strategies can appear

profitable by pure chance and mistakes can be costly, so this is a natural setting to apply

tests that correct for multiple hypotheses (see especially Lo and MacKinlay, 1990, White,

2000, Sullivan et al., 2001, and Kosowski et al., 2006).

The CISDM database reports monthly net returns for a large number of active and
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closed hedge funds from January, 1994 to December, 2011. Our empirical exercise will

determine which of the funds outperformed the risk-free rate over this time period. If

ri t is the log return of fund i in period t and r f t the log return of the risk-free rate, we

test the family of null hypotheses

(1/n)
n
∑

i=1

E(ri t − r f t)≤ 0

using Algorithm 1.

It is plausible that under-performing hedge funds are more likely to close than high

performers (see, e.g., Amin and Kat, 2003, and Capocci and Hübner, 2004). To try to

mitigate this sort of survivorship bias, we include every fund in the CISDM database that

was active at the beginning of the sample, January, 1994. There are 196 active funds

that meet this criterion, 126 closed funds, and 10 hedge fund indices constructed by

the CISDM. Many of the funds (146 of the 196 active funds) are missing observations,

but most are only missing a few. Figure 1 plots a histogram of the number of missing

observations for the funds that are missing one or more observations.

It is possible that returns are reported selectively and the missing returns have lower

mean than the reported returns, but a full examination of this problem is beyond the

scope of this analysis. The individual test statistics for each fund are constructed by

pasting together the non-missing observations and estimating the mean and variance

of the new series; hedge fund returns can exhibit serial correlation (Lo, 2002, and

Getmansky et al., 2004) so the standard error is calculated with a prewhitened QS kernel

with Andrews and Monahan’s (1992) automatic bandwidth calculation (see Andrews,

1991, as well). The statistics’ distribution is estimated with a Circular Block Bootstrap

with block length 15 (Politis and Romano, 1992)—the empirical results were essentially

the same across a range of block lengths; we sample missing observations too and

calculate the bootstrap average return using only the non-missing observations; the

bootstrap variance is estimated using the natural variance estimator corresponding to the

block length (Gotze and Kunsch, 1996). The lower thresholds, p j, are set as in Remark 3

to be the smallest statistic across the bootstrap replications. We use R (R Development

Core Team, 2012, version 2.14.1) as well as the tikzDevice (Sharpsteen and Bracken,

2012), Combinations (Temple Lang, 2010), dbframe (Calhoun, 2010) and sandwich

(Zeileis, 2004, version 2.2-9) packages for the analysis.

Tables 5 and 6 present results; the funds listed were determined to outperform the risk-
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free rate, controlling the FDP at 5% with γ= 0.1, and we calculate the corresponding

confidence intervals for each of those funds. These confidence intervals have been

estimated by testing the null hypotheses

(1/n)
n
∑

i=1

E(ri t − r f t)≤ c

for successively larger values of c using Algorithm 3, and the lower bound for each

fund is the last value of c that the algorithm rejects; consequently there is at most a

5% probability that the true expected returns above the risk-free rate lie outside these

intervals for 10% or more of the funds.

Table 5 lists the active outperforming funds and Table 5 lists the outperforming funds

that have been closed; the first column of each table is the lower bound of the confidence

interval, the second column is the average excess return over the time period, and the

last column is the studentized return. Two of the CISDM indices have significantly

outperformed the risk free rate over this time horizon, but the rest of the listings are

individual funds. We also applied the one-sided StepM to these funds, and the fourteen

funds that were found to outperform the risk-free rate by that measure are marked

with an asterisk. Our FDP procedure found 27 funds to outperform the risk-free rate,

demonstrating that there can be substantial gains in power from relaxing FWE control.

6 Conclusion

This paper proposes simple modifications of existing stepdown procedures that increase

power and reduce computational costs. The underlying idea—find and exclude events

that occur with arbitrarily small probability in sequential testing—has other potential

applications as well. Our simulation evidence indicates that the increase in power can

be substantial.

Appendix A: Proofs of main results

Proof of Theorem 1. We will present the proof of (3) only, as the proof of (4) is essentially

identical. Let {θn} be any sequence of vectors in RS and {εn}n a sequence of positive

numbers that converges to zero as n→∞, where εn is used in place of ε in the theorem’s
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statement. Then there exists a subsequence {n(m)}m of {n} such that the limit of

Prθn(m)
[
Æ

n(m) θs > q for at least one s such that θn(m),s ≤ 0] (27)

exists as m→∞; call this limit β . There also exists a further subsequence {n(m(`)}` such

that each element of {
p

n(m(`)) θn(m(`))} either converges to a finite limit or diverges to

±∞. To reduce the notational clutter, we’ll write n(m(`)) as n`, εn(m(`)) as ε`, and Prθn`

as Pr` for the rest of the proof. It suffices to prove that β ≤ α for any such subsequence.

Define two subsets of {1, . . . , S}:

I1 ≡ {s : −∞< lim
`→∞

p
n` θn`,s ≤ 0}

I2 ≡ {s : lim
`→∞

p
n` θn`,s = −∞}.

We can assume that I1 ∪ I2 is nonempty (otherwise β = 0 for this subsequence and the

result is trivial). Moreover,

lim
`→∞

Pr`[max
s∈I1∪I2

ψ̂s > q]≤ lim
`→∞

Pr`[max
s∈I1

ψ̂s > q] + lim
`→∞

Pr`[max
s∈I2

ψ̂s > q], (28)

where ψ̂s ≡
p

n` θ̂n`,s/v̂s, so it suffices to prove that

lim
`→∞

Pr`[max
s∈I1

ψ̂s > q]≤ α (29)

and

lim
`→∞

Pr`[max
s∈I2

ψ̂s > q] = 0 (30)

and we can assume for the rest of the proof that neither I1 nor I2 are empty.

Start with the obvious inequality

Pr`[max
s∈I1

ψ̂s > q]≤ Pr`[max
s∈I1

ψ̂s > q or min
s∈I1

ψ̂s < p]; (31)

it suffices to bound the limsup of the larger quantity. Consider the event on the right

side of (31) and let j be the first step in the algorithm where one of these inequalities
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holds, i.e.

max
s∈I1

ψ̂s > q j or min
s∈I1

ψ̂s < p j

but

max
s∈I1

ψ̂s ≤ qg and min
s∈I1

ψ̂s ≥ pg for all g < j.

We know (by construction of j) that I1 ⊂ M j−1 almost surely, and so p j ≤ p′, and q j ≥ q′

almost surely where p′ and q′ are the ε` quantile of the distribution of mins∈I1
ψ̂∗s and

the 1−α quantile of the distribution of maxs∈I1
ψ̂∗s respectively. Consequently,

Pr`[max
s∈I1

ψ̂s > q or min
s∈I1

ψ̂s < p]≤ Pr`[max
s∈I1

ψ̂s > q′ or min
s∈I1

ψ̂s < p′]

≤ Pr`[max
s∈I1

ψ̂s > q′] + Pr`[min
s∈I1

ψ̂s < p′]
(32)

and

Pr`[max
s∈I2

ψ̂s > q]≤ Pr`[max
s∈I2

ψ̂s > q′]. (33)

Finally, consistency of F̂n for the limiting distribution of ψ̂ ensures that

lim
`→∞

Pr`[max
s∈I1

ψ̂s > q′]≤ α, (34)

Pr`[min
s∈I1

ψ̂s < p′]→ 0 as `→∞ (35)

and

Pr`[max
s∈I2

ψ̂s > q′]→ 0 as `→∞ (36)

completing the proof.

Proof of Theorem 2. We will only present the proof of (12), since the proof of (13) is

essentially identical. As in the proof of Theorem 1, let {θn} be any sequence of vectors in

RS and {εn}n a sequence of positive numbers that converges to zero as n→∞, where εn

is used in place of ε in the theorem’s statement, and let {n`}` and {ε`}` be subsequences
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such that, as `→∞,

Prθn`
[|pn` θ̂s/v̂s|> q for at least k values of s such that θ`,s = 0]→ β (37)

and each element of {pn` θn`} either converges to a finite limit or diverges to ±∞. It

suffices to prove that β ≤ α for any such subsequence.

Define ψ̂s =
p

n` θ̂n`,s/v̂s and write Prθn`
as Pr` for the rest of the proof to further

simplify notation. Define a subset of {1, . . . , S}:

I1 ≡ {s : lim
`→∞

p
n` θn`,s = 0}.

We can assume that I1 has k or more elements and it suffices to prove that

lim
`→∞

Pr`[k-max
s∈I1

|ψ̂s|> q]≤ α. (38)

Note that

Pr`[k-max
s∈I1

|ψ̂s|> q]≤ Pr`[k-max
s∈I1

|ψ̂s|> q or

i-max
s∈I1

|ψ̂s| > ri+1 for at least one i = 1, . . . , k− 1]; (39)

where each ri denotes the last ri j, so it suffices to bound the limsup of the larger quantity.

Let j be the first step in the algorithm where one of these inequalities holds, so

k-max
s∈I1

|ψ̂s|> q j or i-max
s∈I1

|ψ̂s|> ri+1, j for at least one i = 1, . . . , k− 1

but

k-max
s∈I1

|ψ̂s| ≤ qg and i-max
s∈I1

|ψ̂s| ≤ ri+1,g , i = 1, . . . , k− 1 for all g < j.

Then

i-max
s∈I1

|ψ̂s|> max
I∈R j−1

ri I (40)
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for some i ∈ {1, . . . , k− 1} or

k-max
s∈I1

|ψ̂s|> max
I∈R j−1

qI (41)

must hold a.s., with ri I the 1− ε` quantile of the distribution of i-maxs∈M j−1∪I ψ̂
∗
s and qI

the 1−α quantile of k-maxs∈M j−1∪I ψ̂
∗
s . We know (by construction of j) that I1 ⊂ M j−1∪ I

almost surely for at least one I ∈ R j−1, and so

max
I∈R j−1

ri I ≥ r ′i , (42)

and

max
I∈R j−1

qI ≥ q′ (43)

almost surely where each r ′i is the 1− ε` quantile of the distribution of i-maxs∈I1
|ψ̂∗s |

and q′ is the 1−α quantile of the distribution of k-maxs∈I1
|ψ̂∗s |. Consequently,

Pr`[k-max
s∈I1

|ψ̂s|> q or i-max
s∈I1

|ψ̂s|> ri for at least one i]

≤ Pr`[k-max
s∈I1

|ψ̂s| > q′] +
k−1
∑

i=1

Pr`[i-max
s∈I1

|ψ̂s| > r ′i ] (44)

and consistency of F̂n ensures that

lim
`→∞

Pr`[k-max
s∈I1

|ψ̂s|> q′]≤ α (45)

and

k−1
∑

i=1

Pr`[i-max
s∈I1

|ψ̂s|> r ′i ]→ 0 as `→∞ (46)

completing the proof.

Proof of Theorem 3. This proof is a straightforward combination of the arguments for

Theorems 1 and 2 and is omitted.
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Figure 1: Histogram of missing observations: the horizontal axis depicts the number of
observations reported as missing and the vertical axis is the number of funds with that
many observations missing.
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DGP S Out-performance Under-performance Equal Performance

1 2 µ1 = µ2 = 1
2 40 µ1 = · · ·= µ40 = 1
3 40 µ1 = · · ·= µ6 = 1.4 µ7 = · · ·= µ40 = 1
4 40 µ1 = · · ·= µ6 = 1.4 µ7 = · · ·= µ40 = −1
5 40 µ1 = · · ·= µ20 = 1.4 µ21 = · · ·= µ40 = 1
6 40 µ1 = · · ·= µ20 = 1.4 µ21 = · · ·= µ40 = −1
7 4 µ1 = · · ·= µ4 = 1
8 4 µ1 = µ2 = 1.4 µ3 = µ4 = 1
9 4 µ1 = µ2 = 1.4 µ3 = µ4 = −1

Table 1: Parameters for Monte Carlo experiments.
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Familywise error rate (%) Average # discoveries

# Obs. Type Ours StepM SPA Ours StepM SPA # False

50 1 5.0 5.0 9.8 0
2 5.1 5.1 5.1 0
3 1.6 1.6 1.6 0.8 0.8 0.8 6
4 0.0 0.0 0.0 2.0 0.7 2.0 6
5 3.2 3.2 3.2 2.7 2.7 2.7 20
6 0.0 0.0 0.0 4.3 2.8 4.4 20

100 1 4.7 4.7 7.3 0
2 4.6 4.6 4.6 0
3 1.7 1.7 1.7 2.2 2.2 2.2 6
4 0.0 0.0 0.0 4.1 2.1 4.1 6
5 4.7 4.7 4.7 7.5 7.5 7.6 20
6 0.0 0.0 0.0 10.7 7.7 10.7 20

Table 2: Results of the first Monte Carlo experiment—control of FWE. The columns
under the heading “Familywise error rate (%)” present results for our refinement of the
StepM (under “Ours”), Romano and Wolf’s (2005a) original StepM (“StepM”) and Hsu
et al.’s (2010) Step-SPA (“SPA”). The columns under the heading “Average # discoveries”
follow the same naming convention. The column “# False” lists the number of false
hypotheses for that DGP for convenience. These results are based on 1000 simulations
for each DGP using 999 bootstrap replications and the nominal FWE is 5%.
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k-familywise error rate (%) Average # discoveries

# Obs. Type Ours k-StepM Ours k-StepM # False

50 2 4.1 4.1 0
3 0.3 0.3 2.2 2.2 6
4 0.0 0.0 4.2 1.7 6
5 3.6 3.6 6.4 6.4 20
6 0.0 0.0 10.3 6.6 20

100 2 4.6 4.6 0
3 0.2 0.1 3.9 3.9 6
4 0.3 0.0 5.6 3.5 6
5 4.4 4.3 12.3 12.3 20
6 0.0 0.0 16.4 12.5 20

Table 3: Results of second Monte Carlo experiment—control of k-FWE with k = 3.
The columns under the heading “k-familywise error rate (%)” present results for our
extension of the k-StepM (“Ours”) and Romano and Wolf’s (2005a) original StepM
(“k-StepM”). The columns under the heading “Average # discoveries” follow the same
naming convention. The column “# False” lists the number of false hypotheses for that
DGP for convenience. These results are based on 1000 simulations for each DGP using
999 bootstrap replications and the nominal k-FWE is 5%.
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Size (%) Power (%)

# Obs. Type Ours Bon. AQLR Ours Bon. AQLR # False

100 1 4.7 4 4.4 0
8 4.7 4 4.5 0
9 86.9 85.3 86.9 2

10 91.6 90.8 91.7 2

Table 4: Results of third Monte Carlo experiment—control of size when testing com-
posites of one-sided hypotheses. The columns under the heading “Size (%)” present
results for our method in Corollary 1 (“Ours”), McCloskey’s (2012) and Romano et al.’s
(2012) Bonferroni-based procedure (“Bon.”), and Andrews and Barwick’s (2012a) AQLR
(“AQLR”). The columns under the heading “Power (%)” follow the same naming con-
vention. The column “# False” lists the number of false hypotheses for that DGP for
convenience. These results are based on 1000 simulations for each DGP using 999
bootstrap replications and the nominal size is 5%.
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LB (%) Avg. (%) t-stat

Stenham Trading Portfolio Inc 0.05 5.34 3.37
Libra Fund LP 0.51 20.11 3.58
Otter Creek Partners I LP 0.51 7.53 3.93
Longfellow Merger Arbitrage 0.72 4.41 4.42
CISDM merger.arbitrage * 0.79 4.65 4.45
GAM Trading USD 0.80 6.24 4.24
Loeb Arbitrage Fund L.C. 0.86 7.50 4.17
High Sierra Partners I 0.93 9.71 4.09
TIG Arbitrage Associates Ltd * 1.44 4.46 5.45
Gabelli Associates Limited * 1.44 4.77 5.29
Momentum AssetMaster I USD * 1.87 6.65 5.69
CISDM equity.market.neutral * 1.88 4.42 7.55
Equity Income Partners LP * 2.43 5.00 8.45
Bryn Mawr Capital, L.P. * 3.55 7.68 8.05
Millennium International Ltd * 4.41 11.33 7.10
Millennium USA LP Fund * 4.48 11.45 7.13

Table 5: Active funds that outperform the risk-free rate over 1994–2011 (5% FDP for
γ = 0.1). The column labeled “LB (%)” lists the lower bound on the expected excess
return of the corresponding confidence interval for each fund. The column labeled “Avg.
(%)” lists the funds’ average return over the time period. And the column labeled “t-stat”
lists the test statistic for the one-sided hypothesis test. Data are from the CISDM database
which includes 332 active and closed funds. Funds marked with an asterisk (*) were
found to outperform the risk-free rate when controlling the FWE at 5% as well.
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LB (%) Avg. (%) t-stat

Archstone Partners (Onshore & Offshore) 0.51 6.64 3.64
Balboa LP 0.51 7.90 3.61
Haberman Value Fund 0.51 5.57 3.67
Key Group Investors LP 0.51 5.50 3.82
Geewax Domestic Long/Short Alpha 0.78 8.68 4.06
Prism Partners I L.P. (Domestic) 0.81 7.82 4.12
Coast Enhanced Income Fund II Ltd * 1.87 2.49 14.87
Rainbow Fund Ltd * 1.87 7.17 5.51
Ultra Distressed Securities Fund LP * 1.87 7.97 5.31
Fairfield Sentry Ltd * 3.86 5.54 14.31
Greenwich Sentry LP * 4.32 6.28 13.88

Table 6: Closed funds that outperform the risk-free rate over 1994–2011 (5% FDP for
γ = 0.1). The column labeled “LB (%)” lists the lower bound on the expected excess
return of the corresponding confidence interval for each fund. The column labeled “Avg.
(%)” lists the funds’ average return over the time period. And the column labeled “t-stat”
lists the test statistic for the one-sided hypothesis test. Data are from the CISDM database
which includes 332 active and closed funds. Funds marked with an asterisk (*) were
found to outperform the risk-free rate when controlling the FWE at 5% as well.

36


