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Abstract

We show how to construct continuous and differentiable Impulse Response Func-

tions for discrete-time Vector Autoregressions and Vector Error-Correction Models.

Current methods produce piecewise linear functions that introduce visual distor-

tions, especially when many response functions are plotted in the same graph

to represent uncertainty or partial identification. We also show how to plot the

cumulative response to a shock and incorporate moving average dynamics.
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1 Introduction

Impulse Response Functions (IRFs) are widely used in macroeconomics to represent the

dynamic effect over time of an unanticipated shock. If yt is a stationary sequence of

random vectors, an IRF is a graph of the change in the conditional expectation of yt+s in

response to an unanticipated shock to yt, plotted as a function of s. The conditional

expectation may be implied by a theoretical model or a statistical model, such as a

VAR, in which case additional assumptions may be necessary to identify the shocks

of economic interest. In either of these cases, IRFs can provide a parsimonious and

interpretable summary of the key features of the model.

Producing an IRF requires calculating the conditional expectation Et yt+s under

different counterfactual scenarios, with and without the shock of interest. Since most

macroeconomic models are defined and estimated in discrete time (both t and s are

integers) the conditional expectations used to produce IRFs are calculated in discrete

time as well. (See Chapter 1 of Hamilton, 1994, for example.) But in most applications,

it is desirable to graph the IRFs as curves and connect the points between the integer

values of s; this is especially important when more than one IRF is plotted on the same

graph — whether to represent dynamics under different assumptions (see Bernanke and

Mihov, 1998, and Stock and Watson, 2001, for representative examples), to represent

statistical uncertainty (Kilian, 1998, and Sims and Zha, 1999) or to represent regions

that are partially identified (Uhlig, 2005, and Inoue and Kilian, 2013). Currently, this is

done by linear interpolation between the integer values of Et yt+s but this practice has

some drawbacks. Linear interpolation introduces misleading visual distortions and can

remove potentially interesting dynamics from the model.

In this paper, we show how to construct continuous and smooth IRFs for vector

ARMA and other linear time series models. These IRFs are defined for all values of t and

s, even noninteger values, and ensure that the interpolation obeys the same dynamics

as the rest of the model. The resulting graph removes the distortions introduced by

current methods. Section 2 presents these results, Section 3 provides some numeric and

empirical examples, and Section 4 concludes.

2 Method for smoothing IRFs

This section presents the main results of the paper: smooth IRFs for finite-order linear

models. Section 2.1 presents results for the AR(1) to motivate our approach. Section 2.2

extends this result to finite-order VARs and Section 2.3 extends the result further to
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VARMA and VECM models and to cumulative responses. The rest of this subsection

introduces some notation and defines the IRFs formally.

Let {yt} be a stationary sequence of random vectors in Rk, let Ft represent the

information set available in period t,

Ft = σ(yt, yt−1, yt−2, . . . ),

and let the function ms represent the conditional expectation of yt+s given yt, so

ms(x) = E(yt+s | yt = x)

for each s ≥ 0. Define ms = 0 for s < 0 and let Eyt = µ. For a shock of interest u, with

u ∈ Rk, the IRF corresponding to u is the function

Ψu(s) = E(ms(yt +u)−ms(yt)). (1)

The shock, u, in these equations should be viewed as the “reduced form” version of

the shock — an unanticipated change in the current value of yt. In a Structural VAR

application, u will typically be related to a more fundamental shock of economic interest

δ through the linear transformation u = Γδ, for some known or estimated matrix Γ .
If yt is nonstationary Et may depend on the value of t. In that case, define

mts(x0, . . . , xp) = E(yt+s | yt = x0, . . . , yt−p = xp)

and let

Ψtu(s) =mts(Eyt +u,Eyt−1, . . . ,Eyt−p)−mts(Eyt,Eyt−1, . . . ,Eyt−p).

Note that Ψtu can be independent of t even if mts is not.

2.1 AR(1) motivation

For motivation, start with the simplest univariate case and assume that yt is the AR(1)

yt = ayt−1 + εt (2)

where εt is a martingale difference sequence and |a| < 1. For discrete-time models,

it is easy to define the IRF recursively and Ψh(s) = asu. When a > 0, this function is

well-defined for all positive real s, and can be used directly to interpolate between the
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Figure 1: IRF for simple AR(1) example. Here yt = 0.2yt−1 + εt — the vertical axis shows Ψ1(s).
The left panel plots only integer values of s, the middle panel uses linear interpolation between
the integers, and the right panel plots the function 0.2s directly.

integer points. But typically representing these dynamics has been achieved by linear

interpolation, so

Ψu(s) = (s − bsc)Ψu(bsc + 1)+ (1− s + bsc)Ψu(bsc) (3)

= (s − bsc)absc+1u+ (1− s + bsc)abscu (4)

for noninteger s, where bsc is the largest integer less than or equal to s.
Figure 1 plots Ψu(s) for u = 1 and a = 0.2 using three approaches: first only for the

integer values of s, second using linear interpolation between the integer values defined

by (4), and finally using asu directly for all s ≥ 0.1 While one could debate which of

the functions represents the ‘true’ impact of a shock at a fractional point in time and

whether the interpolated points should be interpreted, the dynamics and rate of decay

of the AR model are much more clearly represented by the right panel that graphs 0.2s

directly.

This should not be surprising. We can see that Ψu(s) = asu satisfies the recurrence

relation implied by the lag structure of the original AR process for any positive real

value of s:

Ψu(s) = asu = a× as−1u = aΨu(s − 1). (5)

Letting Φ(L) define the lag polynomial of the AR(1) defined by Equation (2), (so the

autoregressive model is defined as Φ(L)yt = εt for all t) we can express (5) in a form

1All of the graphs in this paper were produced using R. (R Development Core Team, 2011)
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Figure 2: IRF for simple AR(1) example. Here yt = −0.2yt−1 + εt — the vertical axis showsΨs(1). The left panel plots only integer values of s, the middle panel uses linear interpolation
between the integers, and the right panel plots the function |a|s cos(πs) directly.

that will be easier to extend to more complicated DGPs,

Φ(L)Ψu(s) = (1− aL)Ψu(s) = 0 (6)

for all s ∈ R+ with the implicit definition LΨu(s) = Ψu(s−1). When Ψu(s) is constructed

by linear interpolation, i.e. (4), the recursive relationships (5) and (6) only hold for integer

values of s.
The case a ∈ (−1,0) is slightly more complicated. The previous solution, asu, is

well-defined and real-valued only for integer values of s, so it can no longer be used

directly for interpolation between the noninteger points. Instead, consider the definition

Ψu(s) = |a|s cos(πs) ·u. (7)

For integer values of s, cos(πs) = 1 so (7) is exactly equal to asu. But (7) remains real-

valued and well defined for noninteger s as well. Moreover, (7) satisfies the recurrence

relation for the AR(1) model for all values of a ∈ (−1,1)

Ψu(s) = |a|s cos(πs) ·u = −|a| × |a|s−1 cos(π(s − 1)) ·u = aΨu(s − 1)

implying that

Φ(L)Ψu(s) = (1− aL)Ψu(s) = 0

as before. Figure 2 plots the IRFs for a = −0.2 and u = 1 with no interpolation, linear
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interpolation, and the definition (7). Just as before, the smooth version more accurately

reflects the system’s dynamics after a shock.

This choice of Ψu(s) was not made at random. Any complex number a+ bi can be

written in polar form,

a+ bi = R[cos(θ)− i sin(θ)]

where R = |a2 + b2|1/2 and θ satisfies cos(θ) = a/R and sin(θ) = b/R. Real powers of

a+ bi can be expressed as2

(a+ bi)s = Rs[cos(θs)− i sin(θs)].

For the AR example above, a < 0 and b = 0 so θ = π . Then as = |a|s cos(πs) as we

originally claimed.

This example also suggests a more general method for interpolating between integer

values of s for any VAR; solve recurrence relation using standard tools (as described

in Hamilton, 1994, for example) and use the solution as the IRF for real-valued s. We

pursue that approach in the next section.

2.2 General Approach for VAR(p)

The AR(1) model in the previous section can be extended to general VARs using the

“canonical” representation.3 Define yt to be the VAR(p),

yt =
p∑
j=1

Ajyt−j + εt.

(We assume that yt has mean zero to simplify the presentation without loss of gener-

ality.) To represent this relationship as a VAR(1), form the vector (y ′t , . . . , y ′t−p+1)′ and

2See Hamilton (1994) for background on complex numbers.
3See Hamilton (1994) or Hansen and Sargent (2013) for a textbook treatment of much of this material.

Our presentation borrows heavily from Hamilton (1994).
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observe that

yt
yt−1

yt−2

...

yt−p+1


︸ ︷︷ ︸

Zt

=



A1 A2 · · · Ap−1 Ap
Ik 0 · · · 0 0

0 Ik · · · 0 0
...

...
. . .

...
...

0 0 · · · Ik 0


︸ ︷︷ ︸

F



yt−1

yt−2

...

yt−p+1

yt−p


︸ ︷︷ ︸

Zt−1

+



εt
0

0
...

0


︸ ︷︷ ︸
Ut

. (8)

So this relationship is equivalent to Zt = FZt−1 +Ut. The conditional expectation has a

convenient form that is trivial to calculate for integer values of s,

ms(x) = e1pF sx

where ejp is the kp × k selection matrix

ejp =
(
0k×(j−1)p Ik 0k×(k−j)p

)
.

Consequently, for integer values of s, the IRF has the form

Ψu(s) = e1pF se′1pu.

This section will argue that a variation of this definition remains meaningful for nonin-

teger values of s.
To show this, notice that, since F is square, it has the Jordan decomposition

F = MJM−1 (9)

where J is block diagonal of the form

J =


J1 · · · 0
...

. . .
...

0 · · · Jq


and q is the number of unique eigenvalues of J`. Each J` is an n` × n` matrix of the
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form

J` =



λ` 1 0 · · · 0 0

0 λ` 1 · · · 0 0

0 0 λ` · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ` 1

0 0 0 · · · 0 λ`


where λ1, . . . , λq are the distinct eigenvalues of F and n` is the number of times the `th

eigenvalue is repeated. If all of the eigenvalues of F are distinct, (9) is just the eigenvalue

decomposition of F .

This representation is convenient because, for positive integer values of s, we have

F s = MJsM−1

and

Js =


Js1 · · · 0
...

. . .
...

0 · · · Jsq

 , Js` =



h`(s,0) h`(s,1) h`(s,2) · · · h`(s,n`)
0 h`(s,0) h`(s,1) · · · h`(s,n` − 1)
0 0 h`(s,0) · · · h`(s,n` − 2)
...

...
...

. . .
...

0 0 0 · · · h`(s,0)


,

where h`(s, j) is defined as

h`(s, j) =


|λ`|s

[
cos(θ`s)+ i sin(θ`s)

]
j = 0

s!
j!(s−j)!|λ`|s

[
cos(θ`s)+ i sin(θ`s)

]
if s ≥ j > 0

0 otherwise.

and θ` satisfies cos(θ`) = Re(λ`)/|λ`| and sin(θ`) = Im(λ`)/|λ`| as before.

This representation allows us to write

F s =
q∑
j=1

min(n`,bsc)∑
l=0

s(s−1)···(s−l+1)
l(l−1)···1 |λj|s−l

×
{[
Bjl cos(θjs)+ Cjl sin(θjs)

]
+ i
[
Djl cos(θjs)+ Ejl sin(θjs)

]}
(10)
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where the coefficient matrices Bjl, Cjl, Djl, and Ejl are chosen to match F0, F1, F2, . . . .
For integer values of s, the imaginary components of MJsM−1 exactly cancel, so we can

use the real part of (10) alone, giving

F s =
q∑
j=1

min(n`,bsc)∑
l=0

s(s−1)···(s−l+1)
l(l−1)···1 |λj|s−l

[
Bjl cos(θjs)+ Cjl sin(θjs)

]
(11)

to produce F1, F2, F3, . . . . Our proposal, in a nutshell, is to use the definition given by (11)

for all of the reals rather than just the integers, exactly as we did in the motivating AR(1)

examples.

Equation (10) has another practical implication. Although F s has real and imaginary

components for real s, we are only interested in its real component that generates

the IRFs for integer values of s. Rather than explicitly calculating the matrices Bjl and

Cjl to use (11), we can calculate the complex valued F s and simply drop its imaginary

component. This calculation is directly available in many programming languages and

can be implemented as MJsM−1 using the Jordan decomposition if it is not.

We conclude this section with a formal statement of the result.

Proposition 1 (Impulse Response Functions for VARs). Let F be the coefficient matrix

of the canonical VAR(1) representation of an arbitrary real-valued VAR(p) yt. DefineΨu(s) = e1p Re(F s)e′1pu for all s ∈ [0,+∞), where u ∈ Rk is a shock of theoretical

interest. Then Ψu(s) satisfies (1) for all integer values of s and satisfies the recurrence

relation implied by the original VAR for all positive, real values of s,

Ψu(s) = q∑
j=1

AjΨu(s − j). (12)

Proof. The fact that Ψu(s) meets the definition of the IRF on integers is discussed in the

text and follows from simple algebra. Observe that the series as = Re(F s)e′1pu satisfies

as = Fas−1 since F is real and

Fas−1 = F Re(F s−1)e′1pu = Re(F s)e′1pu = as .

The conclusion of this proposition is a direct consequence.

2.3 Extensions to other linear models

This section considers three extensions to the previous section. First, we show how to

calculate cumulative response functions for VAR(p)s. Second, we show how to calculate

9
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IRFs for Vector Error Correction Models (VECM). And, third, we show how to calculate

IRFs for VARMA(p, q) models. These results all rely on augmenting the series to create

a new canonical VAR(1) and can easily be combined and extended further to other

recursive linear models.

First, suppose that yt has a VAR(p) representation as before. but we want to derive

the effect of the shock u on St, the cumulative sum of the yts,

St =
t∑
s=0

ys .

Since St −yt = St−1, we can extend the canonical representation for yt by embedding

this relationship as the first element of the vector Zt in (8). Equation (8) becomes



St −yt
yt
yt−1

...

yt−p+1


=



I 0 · · · 0 0

0 A1 · · · Ap−1 Ap
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





St−1

yt−1

...

yt−p+1

yt−p


+



0

εt
0
...

0


and can be rewritten as

St
yt
yt−1

...

yt−p+1


=



I A1 · · · Ap−1 Ap
0 A1 · · · Ap−1 Ap
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


︸ ︷︷ ︸

F



St−1

yt−1

yt−2

...

yt−p


+



εt
εt
0
...

0


.

This representation is now a VAR(1) that can be handled exactly as in Proposition 1 andΨu(s) can be defined as e1,p+1 Re(F s)(e1,p+1 + e2,p+1)′u
The VECM model has similar behavior. Suppose now that we have the relationship

∆yt = Byt−1 +A1∆yt−1 + · · · +Ap∆yt−p + εt.

10
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This can also be put in a canonical form using almost identical arguments as before,



yt∆yt∆yt−1

...∆yt−p+1


=



(I + B) A1 · · · Ap−1 Ap
B A1 · · · Ap−1 Ap
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


︸ ︷︷ ︸

F



yt−1∆yt−1

...∆yt−p+1∆yt−p


+



εt
εt
0
...

0



and Ψu(s) can be defined as e1,p+1 Re(F s)(e1,p+1 + e2,p+1)′u again.

VARMA(p, q)s can also be handled similarly. If yt satisfies

yt =
p∑
j=1

Ajyt−j +
q∑
i=1

Biεt−i + εt

this can be written as a canonical VAR(1) using the equation



yt
yt−1

...

yt−p+1

xt
xt−1

...

xt−q+1



=



A1 · · · Ap−1 Ap B1 · · · Bq−1 Bq
Ik · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
...

0 · · · Ik 0 0 · · · 0 0

0 · · · 0 0 0 · · · 0 0

0 · · · 0 0 Ik · · · 0 0
...

...
...

...
. . .

... 0

0 · · · 0 0 0 · · · Ik 0


︸ ︷︷ ︸

F



yt−1

...

yt−p+1

yt−p
xt−1

...

xt−q+1

xt−q



+



εt
0
...

0

εt
0
...

0



.

Now Ψu(s) = e1,p+q Re(F s)(e1,p+q + ep+1,p+q)′u.

Other extensions are obviously also possible and these results can be applied to

state space models as well. See Hansen and Sargent (2013) for additional examples and

discussion.

3 Examples

In this section, we present two examples. The first is a numerical example that demon-

strates how these methods scale when they are used to graph many curves simultane-

ously. The second is an application to Uhlig’s (2005) partial identification strategy for

monetary policy shocks.
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3.1 Numerical example

For a simple numerical example, consider the two-variable VAR(2)y1t

y2t

 =
−0.50 0.01

0.30 0.10

y1,t−1

y2,t−1

+
−0.20 0.10

−0.10 0.00

y1,t−2

y2,t−2

+
ε1t

ε2t

 (13)

and assume that (ε1t, ε2t) ∼ N(0, I) represents the shocks of interest.

The IRF for an ε1-shock is defined as described above,

Ψ1(s) = e1,2 Re(F s)e′1,2

1

0


with

F =


−0.50 0.01 −0.20 0.10

0.30 0.10 −0.10 0.00

1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00


Similarly, the IRF for an ε2-shock is given by

Ψ2(s) = e1,2 Re(F s)e′1,2

0

1

 .
We plot the IRFs in the first two columns Figure 3. The first column plots the

standard IRFs, using linear interpolation between integer-valued time periods, and the

second plots our proposed smooth plots. Although the general impressions from both

graphs are similar, there are important differences. First, peaks and troughs are often

underestimated by the standard IRFs and their timing is frequently misidentified. This

is especially apparent in the first peak in the second row, which falls exactly on period

t + 1 using linear interpolation but approximately t + 0.5 using ours. Second, even the

sign of the IRF can be misidentified, as we see with the immediate response of y1 to a

shock in ε2.

However, it would be reasonable for researchers to want to emphasize the value

of the IRF at the integer time-periods, since those do not depend on any method of

interpolation. The third column of Figure 3 demonstrates one method of doing this:

plot the individual points of the IRF defined on the integers over a light version of the

curve.
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The weaknesses of using linear interpolation become more apparent when we graph

multiple perturbations of the IRFs in the same panel, which is a common way of

representing uncertainty or set-identified responses. To demonstrate this phenomenon,

we generated 150 perturbations of the IRFs by adding independent N(0,0.15) noise

terms to each element of the VAR coefficients in (13), then calculating and plotting the

IRFs as before. (The graphs use alpha blending, a form of partial transparency, to make

the individual curves more visible.)

These graphs are shown in Figure 4. The same issues apparent in Figure 3 are present

here as well. But there are other problems as well. In the first curve, for example, the

discrete IRF shows substantial negative correlation between the period 2 and period 3

estimated response and the period 3 and 4 response to an ε1-shock. But the smoothed

graph makes it clear that this is driven by the timing and size of the first peak. When

that peak is near period 2, the curve has time to fall noticeably before period 2, but

when the peak is closer to period 3, the curve is still rising for that interval. The actual

dynamics implied by the different curves are very similar. Similar but less dramatic

distortions appear in the other panels as well. In the third row, for example, the discrete

IRF shows that about half of the parameter values have an initial increase in response to

a y20 shock and half have an initial decrease, but the smooth curves show that virtually

all of them have an immediate decrease, but that many start to increase very soon. The

exact location of the peak that falls between periods 1 and 2 determines most of the

initial dynamics, but this is impossible to see in the discrete curve.

These graphs reveal that our method of constructing IRFs is more resilient to per-

turbation than linear interpolation: curves generated by close coefficient values have

a more similar appearance. This property is particularly useful when graphing many

similar curves to represent statistical uncertainty. Moreover, as the right columns in

Figures 3 and 4 illustrate, it is still possible to emphasize the integer-valued time periods

while using our method of interpolation.

3.2 Empirical analysis of the effect of monetary policy

This section demonstrates our proposed method for constructing IRFs in a widely-

studied empirical setting. We conduct a brief analysis of the effect of monetary policy

on the real economy using Uhlig’s (2005) sign-restriction partial identification strategy.

First, a quick review. In Structural VAR models, the shocks of theoretical interest —

a monetary policy shock in this section — can simultaneously affect all of the variables

in the model. Without additional assumptions beyond those necessary to estimate the

13
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coefficients of the VAR, we can not estimate all of the unknown parameters necessary to

identify the shock.4 I.e., if yt is a VAR(p),

yt = α+
p∑
i=1

Aiyt−p + εt, (14)

with εt ∼ (0,Σ) a martingale difference sequence, then εt is related to the sequence of

theoretical shocks δt through

εt = Γδt
and δt ∼ (0, I) is also martingale difference sequence. The variance covariance matrix,Σ, can be consistently estimated, but Γ will in general have more unique elements thanΣ. The IRF corresponding to a vector of theoretical shocks δ is given by

Ψδ(s) = e1p Re(F s)e′1pΓδ (15)

so additional restrictions on Γ are necessary to estimate Ψδ.
Uhlig (2005) proposes using a minimal set of assumptions to identify potential

monetary policy shocks. Letting the first element of δ represent a positive monetary

policy shock, Uhlig’s approach is to generate candidate shocks randomly and calculateΨδ corresponding to that specific shock. IRFs that match some a priori plausible criteria

are kept as potential responses to monetary policy shocks and the resulting set of

functions partially identifies the effect of a shock. Formally, for given estimates F̂ andΣ̂, this procedure amounts to generating many candidate shocks u∗ = u/‖u‖2 where

u ∼ N(0, I) and calculating the candidate IRFs as

Ψ̂u∗(s) = e1p Re(F̂ s)e′1pΣ̂1/2u∗, (16)

then discarding Ψ̂u∗(s) that do not meet a set of criteria of that define and constrain the

monetary policy shock.

In this paper, we use our proposed method for graphing IRFs to plot the candidate

responses to a monetary policy shock using Uhlig’s sign restrictions. We fit a 6-lag VAR

using the same six variables as Uhlig: real GDP, the GDP deflator, the federal funds

rate, borrowed reserves, nonborrowed reserves, and a commodity price index.5 We also

impose the same restrictions as Uhlig:

4Kilian (2013) gives a recent review of the SVAR literature.
5As in Uhlig, we fit the model in levels and without an explicit time trend.
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• the Federal Funds rate does not increase for five months after a monetary policy

shock,

• the price level does not decrease for five months after a monetary policy shock,

and

• nonborrowed reserves does not decrease after a monetary policy shock.

Since our interest here is in the method of displaying IRFs, we use Bernanke and Mihov’s

original dataset, which covers January 1965 through December 1997. Most of the

variables are available monthly. Since GDP and the GDP deflator are only quarterly, their

values are interpolated as described by Bernanke et al. (1997) and Bernanke and Mihov

(1998) and we fit a VAR on the monthly data.

Figure 5 presents our graphs.6 For this exercise, we only present the estimate of the

identified set that is associated with the OLS point estimates and ignore the additional

uncertainty in estimating the coefficients. The main results are essentially already

known: the immediate effect of a sign-identified monetary policy shock on GDP is

ambiguous in the very short run but lowers GDP relative to trend after about two years.

And the effects on the other variables are consistent with the identification strategy and

with the previous literature. But our approach to smoothing the IRFS allows each of the

individual candidate shocks to be studied as well. Many of the curves have a minimum

between 1/2 to 2 years, but there is considerable uncertainty over the exact date of the

minimum. The dynamics expressed by the outer envelope of the curves, which is the

quantity plotted in many VAR applications, is not particularly representative of any of

the individual IRFs.

4 Conclusion

Vector Autoregressive models do not just have implications for the period-to-period

dynamics of a stochastic process, they also have implications about the very short-

run dynamics within periods. In this paper, we propose that researchers graph those

intra-period dynamics when plotting the IRFs for linear models and we give a simple

method to do so, based on the model’s canonical VAR(1) representation. Even when

researchers do not want to assign any economic importance to these ultra short-run

dynamics, plotting them in the IRFs minimizes visual distortions that can arise from

discretizing the dynamics, especially when several IRFs are plotted over each other to

represent uncertainty or partial identification.

6As in our earlier example, these graphs use partial transparency, alpha blending, to show as many
of the individual curves as possible.
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Figure 3: Impulse Response Functions from Section 3.1 example; yt is generated by Equa-
tion (13). The left column plots standard IRFs, the middle column plots our new method, and
the right column plots our new approach, emphasizing the values at integer time periods.
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Figure 4: Impulse Response Functions from Section 3.1 example; yt is generated by Equation (13)
with independent N(0,0.15) random variable added to each coefficient. These graphs plot the
IRFs from 150 independent draws of the coefficient matrices. The left column plots standard
IRFs, the middle column plots our new method, and the right column plots our new approach
with an emphasis on the integer time periods..
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Figure 5: Empirical response of each variable to a sign-identified negative monetary policy
shock; see description in Section 3.2. The horizontal axis is the number of years since the initial
shock. These figures graph 500 candidate shocks.
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• Rerender pictures to fix display problems in some pdf vieweres.
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• Makes small wording changes to the abstract.

• Changes the title of the paper.

• Adds empirical analysis of monetary policy (as in Uhlig, 2005).

• Adds Git commit information to the pdf.

• Adds this changelog to the pdf.

• Adds a table of contents to the pdf.
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• Makes several small changes to the internal file organization.

v0.2.2, 2015-02-22: Tweaks the abstract.

v0.2.1, 2015-02-21: Adds author affiliation.

v0.2.0, 2015-02-21: Adds cumulative response function and VECM section; and revises

the text of the paper.

v0.1.0, 2015-02-11: First draft of the paper.

20


