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Abstract

This paper develops a modification of Clark and West’s (2007, J. Econom.) adjusted
out-of-sample t-test. We propose using a recursive window to estimate the bench-
mark model but a fixed-length rolling window to estimate the alternative. The
resulting statistic is asymptotically normal even when the models are nested. The
paper also presents Monte Carlo evidence that this statistic has much higher power
than existing out-of-sample statistics in a common use-case for these tests: when
the DGP is subject to instability. This procedure is then used to analyze Goyal and
Welch’s (2008, Rev. Finan. Stud.) excess returns dataset and supports their finding
that the equity premium is unpredictable out-of-sample.
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1 Introduction

This paper proposes an out-of-sample (OOS) test statistic that is asymptotically normal
and correctly centered even when the models studied are nested. The test is based on one
proposed by Clark and West (2006, 2007), but we propose estimating the benchmark
model with a recursive window and the alternative model with a fixed length rolling
window. The rolling window ensures asymptotic normality, as in Giacomini and White
(2006), and the recursive window allows the null hypothesis to be a statement about the
specification of the Data Generating Process, which is the focus of the vast majority of
the OOS testing literature.1 This combination of estimation windows also gives our test
statistic high power against alternatives that cause the benchmark model to be unstable
— structural breaks, time-varying coefficients, or forms of nonlinearity, for example —
which is a common motivation for using these tests.

OOS tests are common in International Macroeconomics, Macroeconomics, and
Finance (see, for example, Meese and Rogoff 1983; Stock and Watson 2003; and Goyal
and Welch 2008) and there is a substantial literature developing the theoretical properties
of these statistics, beginning primarily with Diebold and Mariano (1995) and West
(1996). In a pair of papers, Clark and West (2006, 2007) develop an OOS test of the
null hypothesis that a small benchmark model is correctly specified. Their test compares
the forecasting performance of a pair of nested models, and the null hypothesis is that
the innovations in the smaller model form a Martingale Difference Sequence (MDS).
This test procedure is popular, and one assumes that this is due in part to the statistic’s
convenience, the statistic is approximately normal after adjusting for the estimation
error of the larger model. Normality comes from a fixed-length rolling window, as in
Giacomini and White (2006), and the adjustment centers the statistic to have mean-zero
under the null. This statistic is especially convenient because other OOS tests for similar
hypotheses (Chao et al. 2001; Clark and McCracken 2001, 2005; Corradi and Swanson
2002, 2004; and McCracken 2007; among others) have a nonstandard limit distribution
and place restrictions on the models under consideration, while other asymptotically
normal statistics test a different null hypothesis (Giacomini and White, 2006) or place
assumptions on the models and DGP that are often violated in empirical work (Diebold
and Mariano 1995; West 1996; West and McCracken 1998; McCracken 2000).2 However,
Clark and West’s statistic is only “approximately normal” in an informal sense. Clark
and West present Monte Carlo evidence of the statistic’s distribution, but only prove
that the statistic is asymptotically normal with mean zero when the benchmark model is
not estimated (Clark and West, 2006). Estimating the parameters of the smaller model
invalidates their proof.

1In particular, this is the focus of West (1996), Clark and McCracken (2001), McCracken (2007), Clark
and West (2006), Clark and West (2007), and many others but not Giacomini and White (2006). See
West (2006) and Clark and McCracken (2013) for a thorough overview of this literature.

2Diebold and Mariano (1995) assume that the models are not estimated. West (1996), West and
McCracken (1998), and McCracken (2000) assume that the models do not converge to the same limit,
which rules out nesting.
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This paper proposes a modified version of Clark and West’s (2006, 2007) statistic
and shows that it is asymptotically normal even when the smaller model is estimated.
To achieve normality, the pseudotrue benchmark model must be estimated consistently,
but the larger alternative model must continue to be estimated inconsistently so that
the test statistic is not degenerate when the models are nested. We can meet both needs
by using different window strategies for each model: the benchmark model is estimated
using a recursive window and the alternative with a fixed-length rolling window. This
approach has the further advantage over existing OOS tests for nested models that the
alternative can be essentially arbitrary as long as high level moment conditions hold.
In particular, researchers can use model selection techniques like the AIC or BIC to
determine the number of lags to include, the particular exogenous variables to include,
etc. Moreover, although we focus on nested models in this paper, the approach can be
used with non-nested models as well. As Clark and McCracken (2011) have recently
argued, West’s (1996) results do not hold when the true DGP is nested by the benchmark
and alternative models, which is allowable under the null hypothesis of interest. (Clark
and McCracken, 2011, call this scenario “overlapping models.”)

The next section presents the intuition and theory for our new statistic. Section 3
presents simulations that compare our pairwise OOS test to Clark and West’s (2006,
2007) original statistics. Section 4 demonstrates the use of our statistic by reanalyzing
Goyal and Welch’s (2008) study of excess return predictability and demonstrates how
our results can be used in settings with many alternative models. Section 5 concludes.
Our results follow from arguments similar to West’s (1996) and have been put in a
separate appendix along with some supporting lemmas.

2 Theoretical results supporting the asymptotically nor-
mal OOS statistic

This section presents the new OOS statistic; first we give an informal motivation of the
statistic, then present the paper’s key assumptions in Section 2.1 and present our formal
theoretical results in Section 2.2.

Suppose for now that a researcher is interested in predicting the target variable
yt+1 with a vector of regressors x t , that vt is another random process that is believed to
potentially contain information about yt+1, and that (yt , x t , vt) is stationary and weakly
dependent. In addition, let β0 = (E x t x

′
t)
−1 E x t yt+1 be the pseudotrue coefficient for the

regression of yt+1 on x t and define εt+1 = yt+1 − x ′tβ0. If this linear model is correctly
specified, then εt+1 is an MDS with respect to σ((x t , vt , yt), (x t−1, vt−1, yt−1), . . . ) and
we can see immediately that

1p
P

T−1
∑

t=R

εt+1(vt − x ′tβ0) (1)
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obeys an MDS CLT and is asymptotically normal as P →∞,3 with R an arbitrary starting
value and P = T − R.

Straightforward algebra (Clark and West, 2007) shows that

1p
P

T−1
∑

t=R

εt+1(vt − x ′tβ0) =
1

2
p

P

T−1
∑

t=R

�

(yt+1 − x tβ0)
2 − (yt+1 − vt)

2 + (x ′tβ0 − vt)
2
�

(2)

almost surely. Clark and West (2006, 2007) base their OOS statistics on the RHS of
Equation (16), but use a second forecast of yt+1 as vt . (Call it ŷt+1.) They use a rolling
window of length R to estimate ŷt+1,4 and R is kept finite as T →∞ so that ŷt+1 inherits
the weak dependence properties of the variables used to estimate it. Using a finite
window prevents the degeneracy that can arise when comparing nested models out-of-
sample (see Clark and McCracken, 2001, and McCracken, 2007), so the conditional
variance of the OOS average remains positive and the average obeys a CLT.5

Clark and West (2006, 2007) propose using this as a test of whether the benchmark
is correctly specified. In their 2006 paper, Clark and West assume that the coefficients
on the benchmark model, β0, are zero under the null, making εt+1 observed directly.
This restriction is relaxed in their 2007 paper, where β0 is unknown and estimated with
the same length-R rolling window as ŷt+1. Now the estimated linear model’s prediction
errors, ε̂t+1, replace εt+1 in the OOS test statistic. Unfortunately, ε̂t+1 is not an MDS
even when εt+1 is, so the statistic is no longer asymptotically mean-zero normal, even
though this approximation performs well in simulations. Since the window length is
finite, the estimator of β0 does not converge to β0.

This paper proposes using the same basic OOS statistic, but using a recursive window
to estimate β0 and produce ε̂t+1:

β̂t =
�

t−1
∑

s=1

xs x
′
s

�−1
t−1
∑

s=1

xs ys+1 and ε̂t+1 = yt+1 − x ′t β̂t (3)

for each t.6 West’s (1996) Theorem 4.1 implies that

1p
P

T−1
∑

t=R

�

(yt+1 − x t β̂t)
2 − (yt+1 − vt)

2 + (x ′t β̂t − vt)
2
�

is asymptotically normal with mean zero under Clark and West’s MDS null for fairly
arbitrary processes vt , as long as vt is weakly dependent and the OOS statistic has

3This claim assumes that the asymptotic variance of the sample average is uniformly positive, a
requirement that we will address in Section 2.2.

4Making ŷt+1 a function of yt , x t−1, zt−1 . . . , yt−R+1, x t−R and zt−R, where zt is another weakly depen-
dent random process

5This approach was first introduced by Giacomini and White (2006).
6The matrix inversion in β̂t can be replaced with a pseudo-inverse if necessary for some values of t

without changing the forecast.
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uniformly positive variance. Just as in Clark and West (2006, 2007), these conditions
are ensured if vt is another forecast of yt+1 based on a fixed-length rolling window.

So far, we have presented an especially simple version of the result to make the
intuition as clear as possible. The next section lists the specific assumptions for the more
general case and defines additional notation.

2.1 Theoretical assumptions

Consider the following environment. There is a single linear benchmark model of the
target variable, yt+1:

yt+1 = x ′tβ + εt+1, t = 1, . . . , T − 1 (4)

where β is an unknown vector of parameters and x t is an observed vector of predictors.
The parameter β is estimated with OLS using a recursive window as described by
Equation (3). The alternative model is denoted ŷt+1 and is estimated with a rolling
window of length R.

The main conditions on the DGP are summarized in the first assumption. The weak
dependence and moment conditions are standard. The assumption of strict stationarity is
stronger than necessary in practice — once the alternative forecasting method is known,
it is only necessary that the OOS adjusted loss difference be weak stationary, and even
that can be relaxed further — but this stronger assumption ensures that the results hold
generally.

Assumption 1. The data are generated by the relationship

yt+1 = x ′tβ0 + εt+1 (5)

for t = 1,2, . . . , for some value β0, with E x tεt+1 = 0, Eε2
t+1 > 0, and E x t x

′
t positive

definite for all t. Also assume that there is an additional sequence of random vectors zt

and the process (εt+1, x t , zt) is stationary and strong mixing of size −r/(r − 2) or uniform
mixing of size −r/(2r − 2), for r > 2.

The next assumption defines the forecasting models and adds additional constraints
to the DGP.

Assumption 2. The benchmark forecast is x ′t β̂t , where β̂t is constructed with a recursive
window according to (3). The alternative forecast satisfies

ŷt+1 =ψ(yt , zt , . . . , yt−R+1, zt−R+1) (6)

where ψ is a known measurable function and the window length, R, remains finite as
T →∞. Moreover, the vector (εt+1, x t , ŷt+1) has uniformly bounded 2r moments where r
is first defined in Assumption 1.
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The requirement that the alternative forecast satisfies moment conditions, rather
than the underlying predictors zt , is somewhat unappealing but necessary. The function
ψ that generates these forecasts is otherwise nearly unrestricted, so even well-behaved
predictors could produce arbitrarily badly-behaved forecasts. For example, if

zt ∼ i.i.d. bernoulli(1/2),

setting ψ(yt , zt) = 1/zt would prevent a CLT from holding since the forecast equals
positive infinity with probability 1/2. It is easy to construct less obvious examples of
problematic functions as well. Assumption 2 implicitly rules out these functional forms
by imposing moment conditions on the alternative models’ forecasts.

Our next assumption ensures that the asymptotic variance of the OOS average is
positive.

Assumption 3. The asymptotic variance-covariance matrix

var
�

1p
P

T−1
∑

t=R

�

x t

ŷt+1

�

εt+1

�

(7)

is uniformly positive definite (in T).

This assumption is much less restrictive than in West (1996). As in Giacomini and
White (2006) and Clark and West (2006, 2007), the assumption only serves to rule out
pathological cases — for example, letting the alternative model consist of only the first
regressor of the benchmark. In West (1996), this assumption is a restriction on the DGP
as well as the forecasting models, but in this paper it is a restriction only on the models.

The final assumption restricts the class of HAC variance estimators we will consider.
We use the same class of estimators studied by de Jong and Davidson (2000) (their class
K ); see their paper for further discussion.

Assumption 4. The kernel K is a function from R to [−1, 1] such that K(0) = 1, K(x) =
K(−x) for all x, K(·) is continuous at zero and all but a finite number of points, and

∫ ∞

−∞
|K(x)| d x <∞,

and
∫ ∞

−∞

�

�

�

∫ ∞

−∞
K(z)ei xz dz

�

�

� d x <∞.

Last, we define some notation that will be used to derive the theoretical properties
of our OOS statistics. The information set that contains the information available for
forecasting yt+1 is

Ft = σ(yt , x t , zt , yt−1, x t−1, zt−1, . . . ).
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The adjusted OOS loss difference using a hypothetical value of β to produce the bench-
mark forecast is denoted by

ft(β) = (yt+1 − x ′tβ)
2 − (yt+1 − ŷt+1)

2 + (x ′tβ − ŷt+1)
2.

Define the additional terms f̂t = ft(β̂t), ft = ft(β0),

ĝt = 2
h

1
P

T−1
∑

s=R

(x ′sβ̂s − ŷs+1)x
′
s

ih

1
T−1

T−1
∑

s=1

xs x
′
s

i−1
x t ε̂t+1

and

gt = 2 E
�

(x ′tβ0 − ŷt+1)x
′
t

�

(E x t x
′
t)
−1 x tεt+1

and the OOS averages f̄ =
∑T−1

t=R f̂t/P, f̄ ∗ =
∑T−1

t=R ft/P, ḡ =
∑T−1

t=R ĝt/P, and ḡ∗ =
∑T−1

t=R gt/P.

2.2 Theoretical results

Asymptotic normality of the OOS average now follows directly from the first three
assumptions without other conditions. The proof is presented in the Appendix and
follows West (1996) closely.

Theorem 1. If Assumptions 1–3 hold then
p

P( f̄ − E f̄ ∗)→d N(0,σ2),

with σ2 = s1 + 2(s2 + s3) and

s1 = limvar(
p

P f̄ ∗), s2 = limcov(
p

P f̄ ∗,
p

P ḡ∗), s3 = limvar(
p

P ḡ∗).

To use this result, we need a consistent estimator of σ2. Define the HAC covariance
estimator σ̂2

1 = ŝ11+2(ŝ12+ ŝ13) and the MDS covariance estimator σ̂2
2 = ŝ21+2(ŝ22+ ŝ23)

with

ŝ11 =
1
P

T−1
∑

s,t=R

( f̂s − f̄ )( f̂t − f̄ )K( t−s
P ), ŝ21 =

1
P

T−1
∑

t=R

( f̂t − f̄ )2,

ŝ12 =
1
P

T−1
∑

s,t=R

( f̂s − f̄ )( ĝt − ḡ)K( t−s
P ), ŝ22 =

1
P

T−1
∑

t=R

( f̂t − f̄ )( ĝt − ḡ),

and

ŝ13 =
1
P

T−1
∑

s,t=R

( ĝs − ḡ)( ĝt − ḡ), ŝ23 =
1
P

T−1
∑

t=R

( ĝt − ḡ)2.

These estimators are consistent under similar assumptions to Theorem 1.
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Lemma 2. If Assumptions 1–4 hold then

σ̂2
1→

p σ2.

If Assumptions 1–3 hold and {εt ,Ft} is an MDS then

σ̂2
2→

p σ2.

Note that these results allow misspecification; asymptotic normality follows from
the weak dependence of the underlying series and from the design of the test statistic.
These statistics have typically been used to test the null hypothesis that the benchmark
model is correctly specified — that {εt ,Ft} is an MDS — which implies that ft is an
MDS as discussed at the beginning of this section. This is especially appealing in our
framework, since the benchmark can be theoretically motivated so the MDS null would
be a test of rationality. For example, Goyal and Welch (2008) test whether excess returns
for the S&P 500 are predictable out-of-sample, and any deviation of εt+1 from an MDS is
potentially interesting. But the MDS null hypothesis only affects the estimator of σ2 (see
Lemma 2); Theorem 1 continues to hold under any DGP that satisfies Assumptions 1 – 3.

In other settings, a researcher may want to test the weaker hypothesis that E f̄ ∗ = 0
but the benchmark may be misspecified. Our statistic can then be interpreted as an
encompassing test as in Harvey et al. (1998), and would test whether the alternative
model contains additional information that could make the benchmark model more
accurate. This interpretation can be motivated by the combination forecasting model

ŷavg,t+1 = (1−w)x ′tβ0 +wŷt+1

which can be rewritten in terms of forecast errors as

yt+1 − ŷavg,t+1 = εt+1 +w(x ′tβ0 − ŷt+1).

The value

w=
Eεt+1( ŷt+1 − x ′tβ0)

E(x ′tβ0 − ŷt+1)2

minimizes the MSE of the combination forecast, so the combination model will have
smaller MSE than the benchmark model, implying that the alternative uses information
not in the benchmark, unless εt+1 and ŷt+1 − x ′tβ0 are uncorrelated. This correlation is
exactly the quantity measured by our statistic.

The final result puts together Theorem 1 and Lemma 2 to produce our test statistics.
The null hypothesis under misspecification is written in terms of Eεt+1 ŷt+1 and not
Eεt+1( ŷt+1 − x ′tβ0), since Eεt+1 x t = 0 by construction. This result is an immediate
consequence of the previous two results and its proof is omitted.

8



3. Monte Carlo Results 2016-10-18

Theorem 3. If Assumptions 1–4 hold, then
p

P f̄ /σ̂1→d N(0, 1)

under the null hypothesis E(εt+1 ŷt+1) = 0 for all t = R, . . . , T−1. If, instead, Assumptions 1–
3 hold, then

p
P f̄ /σ̂2→d N(0, 1)

under the null hypothesis that {εt ,Ft} is an MDS.

The test statistic proposed in Theorem 3 can be easily extended in several ways. For
longer-horizon forecasts (two or more periods ahead), σ̂1 will remain consistent but
σ̂2 will not — the forecast errors for a correctly specified h-step-ahead forecast have
an MA(h − 1) dependence structure — but using a generalized σ̂2 that reflects this
covariance structure restores consistency. To test optimality under loss functions other
than squared-error, one can replace the forecast error with the generalized forecast error
(see, for example Patton and Timmermann, 2007a,b) and replace the OLS estimator
of β with the corresponding M -estimator. And the benchmark model can be replaced
in general with a nonlinear model that satisfies the assumptions of West (1996) or
McCracken (2000) by making the appropriate changes to ft and gt . (See West, 1996,
and McCracken, 2000, for details.) The general approach of using a recursive window
to estimate the benchmark and a fixed-length rolling window to estimate the alternative
applies quite broadly.

3 Monte Carlo Results

This section presents Monte Carlo experiments demonstrating that this paper’s modified
version of Clark and West’s (2007) statistic performs similarly to their original test in
the situations they study, but can have substantially higher power when the DGP has a
structural break.7

The DGP has three different parametrizations: one to study the tests’ size, one to
study power under stationarity, and one to study power if there is a single break in the

7All of these simulations were programmed in R (R Development Core Team, 2011, version 2.14.0)
and use the MASS (Venables and Ripley, 2002, 7.3-22) package.
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relationship between the target and predictors. The DGP is:

yt+1 = γ1t + γ2t x t + εt+1 γt =



















(0.5,0) size simulations

(0.5,0.35) power (stable)

(−0.5,0) t ≤ T
2 power (break)

(1,0.35) t > T
2 power (break)

x t+1 = 0.15+ 0.95x t + ut+1 (εt , ut)
′ ∼ iid N

�

�

0
0

�

,
�

18 −0.5
−0.5 0.025

�

�

R= 120,240 P = 120,240, 360,720.

Both models are estimated by OLS. The benchmark model regresses yt+1 on a constant,
and the alternative regresses yt+1 on a constant and x t . Clark and West (2007) argue
that this DGP mimics an asset pricing application similar to Goyal and Welch’s (2008)
which we study in Section 4.

For comparison, we study this paper’s new statistic as well as Clark and West’s
(2006, 2007) rolling-window and recursive-window test statistics. Clark and West only
prove that their rolling-window statistic is asymptotically normal, and only then if the
benchmark model is not estimated, but their recursive-window statistic is popular in
practice and in simulations tends to perform similarly to their rolling window test. We
use all three of these statistics to test the null that the benchmark model’s innovation is
an MDS.8

Table 1 presents the simulation results. For all of the stable parameter values, the
proposed new statistic has similar rejection probability to Clark and West’s (2007). Both
of Clark and West’s tests are generally slightly undersized relative to our new test, which
is itself slightly undersized: when R is 120 and P is 360 our test statistic has size 7.6% and
Clark and West’s rolling and recursive window tests have size 7.5% and 6.2% respectively,
at a nominal size of 10%. For the stable alternative, our new statistic typically has slightly
higher power than Clark and West’s rolling window and lower power than their recursive
window. For example, when R is 120 and P is 720, the rolling-window test rejects at
66.8%, our statistic at 73.0%, and the recursive window statistic at 82.3%, again for a
nominal size of 10%. In general, the statistics perform similarly under stability.

For the simulations with a single break, the new statistic has considerably higher
power than Clark and West’s (2006, 2007) original tests across all of the choices of R
and P; the rejection probability is more than twice as large for most parametrizations.
When R is 120 and P is 360 with a nominal size of 10%, for example, the new statistic
rejects at 96.4% while the rolling and recursive window statistics reject at 35.5% and
32.9% respectively. Results for other choices of nominal size and sample split give similar
results. So mixing window strategies can give a large power advantage when testing for
time-varying predictability, and performs similarly to the original test when testing for
stable outperformance.

8Clark and West (2007) report the performance of the tests proposed by Chao et al. (2001) and Clark
and McCracken (2005) as well, and of tests based on the naive Gaussian statistic.
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Sim. type R P Pr[CW roll.] Pr[CW rec.] Pr[new]

size 120 120 7.3 7.8 7.6
240 5.5 5.5 6.2
360 7.5 6.2 7.7
720 8.5 5.4 7.2

240 120 7.2 7.2 7.7
240 6.3 6.5 7.1
360 6.8 5.9 6.8
720 7.0 5.9 7.3

power (stable) 120 120 26.2 30.0 29.2
240 39.2 47.2 42.4
360 47.3 59.8 51.1
720 66.8 82.3 73.1

240 120 34.5 36.1 34.1
240 45.9 50.1 46.9
360 56.7 63.8 56.9
720 78.2 87.0 78.7

power (breaks) 120 120 25.9 29.9 62.2
240 30.1 31.0 87.4
360 35.5 32.9 96.5
720 46.1 38.2 99.8

240 120 28.1 30.6 58.2
240 37.6 36.1 87.7
360 43.1 39.0 97.2
720 56.9 42.5 100.0

Table 1: Size and power of the OOS tests in the simulations described by Section 3, at 10%
confidence. These percentages are calculated from 2000 samples. Pr[CW roll.] shows the fraction
of simulations for which Clark and West’s (2007) rolling-window statistic rejects; Pr[CW rec.]
shows the fraction of simulations for which their recursive-window statistic rejects; and Pr[new]
shows the fraction of simulations for which this paper’s test rejects.

4 Empirical Illustration

This section demonstrates the use of our new statistic by revisiting Goyal and Welch’s
(2008) study of excess stock returns. Goyal and Welch argue that many variables thought
to predict excess returns (measured as the difference between the yearly log return of
the S&P 500 index and the T-bill interest rate) on the basis of in-sample evidence fail to
do so out-of-sample. To show this, Goyal and Welch look at the forecasting performance
of models using a lag of the variable of interest, and show that these models do not
significantly outperform the excess return’s recursive sample mean.
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Here, we conduct the same analysis, but using this paper’s MDS test. The benchmark
model is the excess return’s sample mean (as in the original) and the alternative models
are of the form

excess returnt+1 = β0 + β1 predictort + εt+1,

where β0 and β1 are estimated by OLS using a 10-year window. The predictors used
are listed in the predictor column of Table 2. (See Goyal and Welch, 2008, for a de-
tailed description of the variables.) We also consider Campbell and Thompson’s (2008)
proposed correction to the models, that the forecasts be bounded below by zero since
negative forecasts are incredible, as well as two simple combination forecasts, the mean
and the median (over both the original and the non-negative forecasts). The data set
is annual data beginning in 1927 and ending in 2009, and the rolling window uses 10
observations.9

Table 2 presents the results for each model. The column value gives the value of
the test statistic for each model, while naive indicates whether the statistic is greater
than the standard 10% critical value (1.28). Three predictors are significant at the naive
critical values for both the original and bounded forecasts: the dividend yield, long term
interest rate, and book to market ratio, and the median forecast is significant as well.
This could suggest that excess returns are not an MDS and that information in these
three variables is useful for predicting returns.

However, we know that this is an extremely optimistic assessment of the models’
performance. We are conducting 30 simultaneous hypothesis tests, so it is likely that
some will reject by chance. There are several approaches that could accommodate
this multiplicity and a full treatment is beyond the scope of this paper, however, it is
straightforward to use our results to derive a valid critical value similar to White (2000).

Let f̄i be the OOS statistic associated with the ith alternative forecast, ŷi,t+1. The
arguments underlying our results apply essentially unchanged to multivariate ft , so the
continuous mapping theorem implies that

max
i=1,...,30

p
P f̄i/σ̂2i →d max

i=1,...,30
Wi,

where W ∼ N(0, V ) and V is the 30× 30 correlation matrix with elements

Vi j = lim
cov( f̄i, f̄ j)

var( f̄i)1/2 var( f̄ j)1/2
.

To estimate V , we use the correlation matrix associated with the multivariate ana-
logue of σ̂2,

1
P

T−1
∑

t=R

�

( f̂t − f̄ )( f̂t − f̄ )′ + ( f̂t − f̄ )( ĝt − ḡ)′ + ( ĝt − ḡ)( f̂t − f̄ )′ + 2( ĝt − ḡ)( ĝt − ḡ)′
�

9This statistical analysis was conducted in R (R Development Core Team, 2011) and uses the MASS
(Venables and Ripley, 2002, 7.3-22) package.
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4. Empirical Illustration 2016-10-18

value naive corrected

book to market CT 2.04 sig.
long term rate CT 1.64 sig.
median 1.59 sig.
long term rate 1.56 sig.
book to market 1.41 sig.
dividend yield CT 1.30 sig.
dividend yield 1.26
stock variance CT 1.22
dividend payout ratio CT 1.18
average 1.04
dividend price ratio 0.95
treasury bill CT 0.89
dividend price ratio CT 0.82
default yield spread CT 0.70
net equity 0.70
net equity CT 0.69
earnings price ratio CT 0.65
dividend payout ratio 0.64
treasury bill 0.53
stock variance 0.50
inflation CT 0.20
default return spread 0.16
default return spread CT 0.12
default yield spread 0.09
inflation −0.09
term spread CT −0.29
term spread −0.43
earnings price ratio −0.56
long term yield −0.73
long term yield CT −0.89

Table 2: Results from OOS comparison of equity premium prediction models; the benchmark is
the recursive sample mean of the equity premium and each alternative model is a constant and
single lag of the variable listed in the predictor column. The dataset begins in 1927 and ends in
2009 and is annual data. The value column lists the value of this paper’s OOS statistic, the naive
column indicates whether the statistic is significant at standard critical values, and the corrected
column indicates significance using critical values that account for the number of models. See
Section 4 for details.

where f̂t and ĝt are vectors with ith elements

f̂i t = (yt+1 − x ′t β̂t)
2 − (yt+1 − ŷi,t+1)

2 + (x ′t β̂t − ŷi,t+1)
2

13



5. Discussion 2016-10-18

and

ĝi t = 2
h

1
P

T−1
∑

s=R

(x ′sβ̂s − ŷi,s+1)x
′
s

ih

1
T−1

T−1
∑

s=1

xs x
′
s

i−1
x t ε̂t+1

respectively. Call this estimate V̂ and let ĉ denote the 0.90 quantile of the distribution of
maxi Ŵi, with Ŵ ∼ N(0, V̂ ). Then

limsup
T→∞

Pr
�

max
i=1,...,30

p
P f̄i/σ̂2i > ĉ

�

≤ 0.10,

under the null hypothesis that excess returns are an MDS with respect to all of the
information contained in the variables listed in Table 2, making ĉ an asymptotically valid
critical value.10

We calculate ĉ by generating 1999 draws from N(0, V̂ ), giving a value of 2.55, and
the corrected column of Table 2 denotes the models that remain significant at 10% with
this critical value. Using this critical value, none of the predictors are significant, which
gives additional support to Goyal and Welch’s (2008) conclusion that excess returns are
unpredictable and also demonstrates the importance of correcting for multiplicity in
these studies.

5 Discussion

This paper presents an OOS test statistic similar to Clark and West’s (2006, 2007) that
is asymptotically normal when comparing nested or non-nested models. Normality is
achieved by estimating the alternative model using a fixed-length rolling window — as
do Clark and West — but estimating the benchmark model with a recursive window.
Simulations indicate that the new statistic behaves similarly to Clark and West’s original
test when the DGP is stable but can have much higher power when the DGP has
structural breaks. We also have presented an empirical study of the equity premium that
demonstrates how to use these results with several alternative models.

10Hansen (2005) makes the point that multiple one-sided comparisons can have poor power if irrelevant
predictors are included in these tests and proposes a threshold for discarding very poor forecasts. His
threshold is well below our worst performing model, so this issue is not a concern here.
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A Not-for-publication supplemental appendix

This appendix contains mathematical proofs and some supporting Lemmas for the main
paper, but will be posted separately from the published version. Define the following
additional terms:

Ft(β) = 2(2x ′tβ − ŷt+1 − yt+1)x
′
t ,

Ft = Ft(β0), F̂t = Ft(β̂t), F = E Ft , B = (E x t x
′
t)
−1, Bt = (

∑t−1
s=1 xs x

′
s/(t − 1))−1, and

Ht =
∑t−1

s=1 xsεs+1/(t−1). And let ‖·‖ denote the L2 norm in Rk. Note that Assumptions 1
and 2 imply that ft , gt , and Ft are all strong mixing of size −r/(r−2) or uniform mixing
of size −r/(2r − 2) and are stationary with bounded rth moments.

Proof of Theorem 1

Let R′ be a new sequence such that R′ →∞ as T →∞ and R′ = o(
p

P), and then
rewrite the centered OOS average as

p
P( f̄ − E f̄ ∗) = 1p

P

T−1
∑

t=R′
( f̂t − E ft) +

1p
P

R′−1
∑

t=R

( f̂t − E ft). (8)

Lemma A.1 ensures that the second summation is op(1), so we can rewrite (8) as

p
P( f̄ − E f̄ ∗) = 1p

P

T−1
∑

t=R′
( ft − E ft) + FB 1p

P

T−1
∑

t=R′
Ht

+ 1p
P

T−1
∑

t=R′
(Ft − F)BHt +

1p
P

T−1
∑

t=R′
F(Bt − B)Ht

+ 1p
P

T−1
∑

t=R′
(Ft − F)(Bt − B)Ht +

1p
P

T−1
∑

t=R

wt + op(1)

where wt equals 2(β̂t − β0)′x t x
′
t(β̂t − β0). Lemma A.3 shows that

1p
P

T−1
∑

t=R′
(Ft − F)BHt →

p 0 (9)

1p
P

T−1
∑

t=R′
F(Bt − B)Ht →

p 0 (10)

and

1p
P

T−1
∑

t=R′
(Ft − F)(Bt − B)Ht →

p 0 (11)
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and Lemma A.2 along with the CLT ensures that 1p
P

∑T−1
t=R wt = op(1). The proof that

1p
P

T−1
∑

t=R′
( ft − E ft) + FB 1p

P

T−1
∑

t=R′
Ht → N(0,σ2).

follows the same argument as in West (1996) and McCracken (2000).

Proof of Lemma 2

We will only prove σ̂2→p σ. The result for σ̂1 is essentially the same and uses de Jong
and Davidson’s (2000) Theorem 2.1 for the HAC equivalent of Equations (12)–(14).

First, we can rewrite the components of the variance estimator as

ŝ21 =
1
P

T−1
∑

t=R

�

( ft − E ft) + ( f̂t − ft)− ( f̄ − E ft)
�2

ŝ22 =
1
P

T−1
∑

t=R

�

( ft − E ft) + ( f̂t − ft)− ( f̄ − E ft)
��

(gt − E gt) + ( ĝt − gt)− ( ḡ − E gt)
�

and

ŝ23 =
1
P

T−1
∑

t=R

�

(gt − E gt) + ( ĝt − gt)− ( ḡ + E gt)
�2

so σ̂2→p σ as long as the following hold: f̄ − E f̄ ∗→p 0, ḡ − E ḡ∗→p 0,

1
P

T−1
∑

t=R

( ft − E ft)
2→p lim var(

p
P f̄ ∗) (12)

1
P

T−1
∑

t=R

(gt − E gt)
2→p lim var(

p
P ḡ∗) (13)

1
P

T−1
∑

t=R

( ft − E ft)(gt − E gt)→p lim cov(
p

P f̄ ∗,
p

P ḡ∗) (14)

1
P

T−1
∑

t=R

( f̂t − ft)
2→p 0, (15)

and

1
P

T−1
∑

t=R

( ĝt − gt)
2→p 0. (16)
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The first two results are implied by the proof of Theorem 1 and (12), (13), and (14)
follow from the LLN, since each summand is an L1-mixingale of size −1 (see, for example
Davidson, 1994, Theorem 17.5), so it suffices to prove (15) and (16).

As in the proof of Theorem 1, let R′ be a new sequence such that R′→∞ as T →∞
and R′ = o(

p
P). Straightforward algebra reveals that (15) holds if

1
P

T−1
∑

t=R

((β̂t − β0)
′x t)

4→p 0 (17)

and

1
P

T−1
∑

t=R

(x ′t(β̂t − β0))
2(2x ′tβ0 − yt+1 − ŷt+1)

2→p 0. (18)

The LHS of (17) is bounded by

1
P

T−1
∑

t=R

‖β̂t − β0‖4‖x t‖4

= 1
P

R′−1
∑

t=R

‖β̂t − β0‖4‖x t‖4+ 1
P

T−1
∑

t=R′
‖β̂t − β0‖4‖x t‖4

≤ max
t=R,...,R′−1

‖β̂t − β0‖4 1
P

R′−1
∑

t=R

‖x t‖4+ max
t=R′,...,T−1

‖β̂t − β0‖4 1
P

T−1
∑

t=R′
‖x t‖4

= Op(R
′/P) + op(1)

by Lemma A.2 and the LLN. A similar argument holds for the second term:

1
P

T−1
∑

t=R

(x ′t(β̂t − β0))
2(2x ′tβ0 − yt+1 − ŷt+1)

2

= 1
P

R′−1
∑

t=R

(x ′t(β̂t − β0))
2(2x ′tβ0 − yt+1 − ŷt+1)

2

+ 1
P

T−1
∑

t=R′
(x ′t(β̂t − β0))

2(2x ′tβ0 − yt+1 − ŷt+1)
2

≤ max
t=R,...,R′−1

‖β̂t − β0‖2 1
P

R′−1
∑

t=R

‖x t(2x ′tβ0 − yt+1 − ŷt+1)‖2

+ max
t=R′,...,T−1

‖β̂t − β0‖2 1
P

T−1
∑

t=R′
‖x t(2x ′tβ0 − yt+1 − ŷt+1)‖2

= Op(R
′/P) + op(1)

again by Lemma A.2 and the LLN. Both terms converge to zero in probability by con-
struction. The proof of (16) is similar.
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Supporting Results

Lemma A.1. Suppose the conditions of Theorem 1 hold, and define R′ to be a sequence
that satisfies R′→∞ as T →∞ and R′ = o(

p
P). Then

1p
P

R′−1
∑

t=R

( f̂t − E ft)→p 0.

Proof. We can rewrite this summation as

1p
P

R′−1
∑

t=R

( f̂t − E ft) =
1p
P

R′−1
∑

t=R

( ft − E ft)+

1p
P

R′−1
∑

t=R

(4x ′tβ0 − 2yt+1 − 2 ŷi,t+1)x
′
t(β̂t − β0) +

1p
P

R′−1
∑

t=R

(x ′t β̂t − x ′tβ0)
2.

Each of these individual summations can be shown to converge to zero in probability.
First,

E
�

�

1p
P

R′−1
∑

t=R

( ft − E ft)
�

�≤ 1p
P

R′−1
∑

t=R

E| ft − E ft |= O(R′/
p

P).

Also,

�

�

1p
P

R′−1
∑

t=R

(4x ′tβ0 − 2yt+1 − 2 ŷi,t+1)x
′
t(β̂t − β0)

�

�

≤ 1p
P

R′−1
∑

t=R

‖(4x ′tβ0 − 2yt+1 − 2 ŷi,t+1)x t‖ max
t=R,...,R′−1

‖β̂t − β0‖

= Op(R
′/
p

P)

and

�

�

1p
P

R′−1
∑

t=R

(x ′t β̂t − x ′tβ0)
2
�

�≤ 1p
P

R′−1
∑

t=R

‖x t‖2 max
t=R,...,R′−1

‖β̂t − β0‖2 = Op(R
′/
p

P).

by Lemma A.2 and the LLN. Since R′/
p

P → 0 by construction, this completes the
proof.

Lemma A.2. Suppose a ∈ [0,1/2) and Assumptions 1 – 3 hold, and let R′ be a sequence
such that R′→∞ as T →∞ and R′ = o(

p
P). Then

1. maxt=R′,...,T−1|(t − 1)aHt |→p 0,
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2. maxt=R,...,R′−1|(t − 1)aHt |= Op(1),

3. maxt=R′,...,T−1|Bt − B|→p 0,

4. maxt=R,...,R′−1|Bt − B|= Op(1),

5. maxt=R′,...,T−1|(t − 1)a(β̂t − β0)|→p 0, and

6. maxt=R,...,R′−1|(t − 1)a(β̂t − β0)|= Op(1),

where the absolute value is taken as the largest of the element-by-element absolute values.

To streamline the presentation, we’ll assume in these proofs that x t is a scalar.

Proof. We will prove each part in order.

1. Our assumptions ensure that x tεt+1 is L2-mixingale of size−1/2 (see Theorem 17.5
of Davidson, 1994); let ct and ζk denote its mixingale constants and coefficients.
Note that, for any b, t b x tεt+1 is also an L2-mixingale array with constants t bcs and
coefficients ζk, since

‖Et−k t b x tεt+1‖= t b‖Et−k x tεt+1‖
≤ (t bct)ζk

and

‖t b x tεt+1 − t b Et+k x tεt+1‖= t b‖x tεt+1 − Et+k x tεt+1‖
≤ (t bct)ζk+1.

Let δ be a positive number less than 1/2−α, so

E
h

max
t=R′,...,T−1

�

�(t − 1)a−1
t−1
∑

s=1

xsεs+1

�

�

2
i

≤ (R′ − 1)−2δ E
h

max
t=R′,...,T−1

�

�

t−1
∑

s=1

xsεs+1(s− 1)a−1+δ
�

�

2
i

≤ (R′ − 1)−2δO(1)
T−1
∑

s=1

(s− 1)2(a−1+δ)

where the second inequality follows from McLeish’s (1975) maximal inequality
(also available as Davidson, 1994, Theorem 16.9 and Corollary 16.10). The sum-
mation converges to a constant and (R′ − 1)−2δ→ 0 as T →∞, completing the
proof.
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2. Now ta−1 x tεt+1 is an L2-mixingale of size −1/2 and we can again use McLeish’s
(1975) maximal inequality to get

E
�

� max
t=R,...,R′−1

�

(t − 1)a−1
t−1
∑

s=1

xsεs+1

�2�
�≤ E

�

� max
t=R,...,T−1

�

t−1
∑

s=1

sa−1 xsεs+1

�2�
�

= O(1)
R′−1
∑

s=1

s2a−2

which converges to a finite limit.

3. The same argument used in Part 1 implies that maxt=R′,...,T−1|B−1
t −B−1|→p 0. Since

matrix inversion is continuous, the result follows.

4. Holds by Assumptions 1 and 2.

5. We have

max
t=R′,...,T−1

|(t − 1)a(β̂t − β0)| ≤ max
t=R′,...,T−1

|B̂t − B| max
t=R′,...,T−1

�

�(t − 1)a−1
t−1
∑

s=1

xsεs+1

�

�

+ max
t=R′,...,T−1

�

�B(t − 1)a−1
t−1
∑

s=1

xsεs+1

�

�

and both terms converge to zero in probability by Parts 1 and 3.

6. Similar to the previous argument, we have

max
t=R,...,R′−1

|(t − 1)a(β̂t − β0)| ≤ max
t=R,...,R′−1

|B̂t − B| max
t=R,...,R′−1

�

�(t − 1)a−1
t−1
∑

s=1

xsεs+1

�

�

+ max
t=R,...,R′−1

�

�B(t − 1)a−1
t−1
∑

s=1

xsεs+1

�

�.

Both terms are Op(1) by Parts 2 and 4.

Lemma A.3. Under the conditions of Theorem 1, Equations (9)–(11) hold.

Proof of (9). Choose δ > 0 and a ∈ (0, 1/2) and write

1p
P

T−1
∑

t=R′
(Ft − F)BHt =

1p
P

T−1
∑

t=R′
(Ft − F)BHt 1{|(t − 1)aBHt |> δ}

+ 1p
P

T−1
∑

t=R′
(Ft − F)BHt 1{|(t − 1)aBHt | ≤ δ} (19)
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For any c > 0,

Pr
h

�

�

1p
P

T−1
∑

t=R′
(Ft − F)BHt 1{|(t − 1)aBHt |> δ}

�

�> c
i

≤

Pr
�

max
t=R′,...,T−1

|(t − 1)aBHt | > δ
�

which converges to zero by Lemma A.2, so the first summation on the RHS of (19)
converges to zero i.p. For the second summation,

E
h

1p
P

T−1
∑

t=R′
(Ft − F)BHt 1{|(t − 1)aBHt | ≤ δ}

i2
= O

�

E
h

δp
P

T−1
∑

t=R′

Ft−F
(t−1)a

i2�

.

The expectation on the RHS is of order P−1
∑T−1

t=R′(t − 1)−2a, since Ft/(t − 1)a is an
L2-mixingale of size −1/2 by construction (see the proof of Lemma A.2 for a more
detailed discussion of the mixingale argument), and converges to zero by Kronecker’s
Lemma.

Proof of (10). Note that

�

�

1p
P

T−1
∑

t=R′
F(Bt − B)Ht

�

�= Op

�

max
t=R′,...,T−1

|Bt − B|
�

Op

�

1p
P

T−1
∑

t=R′
|Ht |

�

.

Lemma A.2 implies that the first component converges to zero in probability, so it suffices
to show that the second is Op(1). As discussed in the proof of Lemma A.2, x tεt+1 is an
L2-mixingale of size −1/2 and

1p
P

T−1
∑

t=R′
‖Ht‖2 = Op

�

1p
P

T−1
∑

t=R′
t−1/2

�

The last summation is O(1) by Lemma A1 of West (1996), completing the proof.

Proof of (11). This proof is essentially the same as that of (10). We have

�

�

1p
P

T−1
∑

t=R′
(Ft − F)(Bt − B)Ht

�

�= Op

�

max
t=R′,...,T−1

|Bt − B|
�

Op

�

1p
P

T−1
∑

t=R′
|(Ft − F)Ht |

�

where the first component converges to zero in probability. Then

1p
P

T−1
∑

t=R′
‖(Ft − F)Ht‖2 ≤

1p
P

T−1
∑

t=R′
‖Ft − F‖2‖Ht‖2 = O

�

1p
P

T−1
∑

t=R′
‖Ht‖2

�

which is O(1) as in the proof of (10).
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