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Abstract

This paper weakens the size and moment conditions needed for typical block bootstrap
methods (i.e. the moving blocks, circular blocks, and stationary bootstraps) to be valid
for the sample mean of Near-Epoch-Dependent (NED) functions of mixing processes;
they are consistent under the weakest conditions that ensure the original NED process
obeys a central limit theorem (CLT), established by De Jong (1997, Econometric Theory).
In doing so, this paper extends De Jong’s method of proof, a blocking argument, to
hold with random and unequal block lengths. This paper also proves that bootstrapped
partial sums satisfy a functional CLT (FCLT) under the same conditions.
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Block bootstraps, e.g. the moving blocks (Kunsch, 1989, and Liu and Singh, 1992), circular
block (Politis and Romano, 1992), and stationary bootstraps (Politis and Romano, 1994),
have become popular in economics, partly because they do not require the researcher to
make parametric assumptions about the data generating process. They are valid under
general weak dependence and moment conditions. Some recent papers (Gonçalves and White,
2002, and Gonçalves and De Jong, 2003) relax the dependence and moment conditions of
the original papers to fit with the Near-Epoch-Dependence (NED) assumptions commonly
used in econometrics.1,2 But these conditions are still stronger than required for a CLT to
hold; De Jong (1997) has established the CLT under L2-NED with smaller size and moment
restrictions.3 This paper shows that these block bootstrap methods consistently estimate
the distribution of the sample mean under De Jong’s (1997) assumptions and show that
an FCLT holds as well.4 It also relaxes Gonçalves and White’s (2002) and Gonçalves and
De Jong’s (2003) requirement that the expected block length be o(n1/2) to the original
papers’ requirement that it be o(n), although, as we will show, their stronger assumption is
necessary for the bootstrap to be consistent under some forms of heterogeneity.

The proof exploits the conditional independence of the blocks in each bootstrap. Each
bootstrap proceeds by drawing blocks of M consecutive observations from the original
time series, and then pasting these blocks together to create the new bootstrap time series.
The moving blocks bootstrap does exactly that; the circular block bootstrap “wraps” the
observations, so that (Xn−1, Xn, X1, X2), for example, is a possible block of length four
(letting Xt denote the original time series). The stationary bootstrap wraps the observations
and also draws M at random for each block; Politis and Romano (1994) suggest drawing
M from the geometric distribution. As the name suggests, the series produced by the
stationary bootstrap are strictly stationary, while those produced by the other methods are
not. Although the stationary bootstrap was believed to be much less efficient than other block
bootstrap methods due to results of Lahiri (1999), Nordman (2009) has shown that it is only

1Gonçalves and White (2002) show that these bootstrap methods can be applied to heterogeneous
L2+δ-NED processes of size −2(r − 1)/(r − 2) on a strong mixing sequence of size −r(2 + δ)/(r − 2), where
r > 2 and δ > 0, when the original series has uniformly bounded 3r-moments. Gonçalves and De Jong
(2003) relax these conditions to L2+δ-NED of size −1 and r + δ moments for the original series, and size
−(2 + δ)(r + δ)/(r− 2) for the underlying mixing series. Both papers require that the expected block length
grow with n and be o(n1/2). Gonçalves and Politis (2011) discuss these issues further.

2An array {Xnt} is an Lρ-NED process on a mixing array {Vnt} if

‖Xnt − E(Xnt | Vn,t−m, . . . , Vn,t+m)‖ρ ≤ dntvm (1)

with vm → 0 as m → ∞ and {dnt} an array of positive constants. It is of size −γ if vm = O(m−γ−δ) for
all δ > 0. Dropping the index “n” gives the series definition. Note that the underlying strong and uniform
mixing arrays are not required to be stationary.

3De Jong (1997) proves that the CLT holds for averages of L2-NED processes of size −1/2 on a strong
mixing series of size −r/(r − 2), r > 2 and the original series having bounded r-moments.

4Radulović (1996) proves consistency for the moving blocks bootstrap for any stationary strong mixing
sequence that satisfies the CLT. This paper uses a similar method of proof to his, but also accommodates
nonstationary sequences and the stationary bootstrap.
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slightly less efficient than the other block-bootstrap methods discussed in this paper, and
has efficiency identical to that of the non-overlapping block bootstrap. Consequently, there
has been renewed interest in the stationary bootstrap since stationarity of the bootstrap
samples can be a useful property in theoretical research. Kreiss and Paparoditis (2011a)
provides a recent review of the bootstrap for time-series processes5 and Gonçalves and
Politis (2011) further discuss recent developments in block-bootstraps.

Theorem 1 presents the main result, asymptotic normality of the distribution of boot-
strapped sums. This paper adopts the standard notation that E∗, var∗, etc. are the usual
operators with respect to the probability measure induced by the bootstrap and will use
explicit stochastic array notation for precision. Also note that all results are presented for
the scalar case but generalize immediately to random vectors. All of the proofs are presented
after the main text of the paper; only proofs for the stationary bootstrap are given, since
proofs for the other methods are similar and easier to construct. All limits are taken as
n→∞ unless otherwise noted and ‖·‖r denotes the Lr-norm.

Theorem 1. Suppose the following conditions hold.

1. Xnt is L2-NED of size −1/2 on an array {Vnt} that is either strong mixing of size
−r/(r − 2) or uniform mixing of size −r/2(r − 1), with r > 2. The NED magnitude
indices are denoted {dnt}.

2. The array µnt − µ̄n is uniformly bounded and
∑n

t=1(µnt − µ̄n)2 = o(np2n) (for the
stationary bootstrap) or

∑n
t=1(µnt − µ̄n)2 = o(n/M2

n) (for the moving or circular block
bootstraps), where EXnt = µnt, µ̄n = n−1

∑n
t=1 µnt, and pn and Mn are further defined

in item 4. Moreover,
√
n‖X̄n − µ̄n‖2 → σ > 0, with X̄n = (1/n)

∑n
t=1Xnt.

3. There exists an array of positive real numbers {cnt} such that (Xnt − µnt)/cnt is
uniformly Lr-bounded and cnt and dnt/cnt are uniformly bounded in n and t.

4. X∗nt is generated by the stationary bootstrap with geometric block lengths with success
probability pn, pn = cn−a and a, c ∈ (0, 1), or by the moving or circular block bootstrap
with block length Mn such that Mn ∼ na for a ∈ (0, 1). Let Mni be the block length of
the ith block, i = 1, . . . , Jn, and define Kn0 = 0 and Knj =

∑j
i=1Mni. The last block,

Mn,Jn, is defined as Kn,Jn −Kn,Jn−1, so Kn,Jn = n a.s.

Then σ∗2 →p σ2, σ̂∗2 →p σ2,

sup
x

∣∣Pr∗
[√
n(X̄∗n − E∗ X̄∗n) ≤ x

]
− Pr

[√
n(X̄n − E X̄n) ≤ x

]∣∣→p 0, (2)

and
sup
x

∣∣Pr∗
[√
n(X̄∗n − E∗ X̄∗n)

/
σ̂∗n ≤ x

]
− Φ(x)

∣∣→p 0, (3)

5Also see the discussion papers by Dahlhaus (2011), Gonçalves and Politis (2011), Horowitz (2011),
Jentsch and Mammen (2011), and Kreiss and Paparoditis (2011b).
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where Φ is the CDF of the Standard Normal distribution and

σ̂∗2n = 1
n

Jn∑
j=1

{ Knj∑
t=Kn,j−1+1

(X∗nt − X̄∗n)
}2
. (4)

As mentioned earlier, these are the same size and mixing conditions used by De Jong
(1997). Note that De Jong does allow a little more flexibility in the conditions on the array
{cnt} (see also Davidson, 1993); essentially, he allows for a single set of blocks with the
maximal {cnt} over each block well-behaved, while this paper requires this condition to
hold for every possible partition of blocks. This additional restriction is required because
the stationary bootstrap will select the blocks randomly and is similar to De Jong and
Davidson’s (2000) requirement for the FCLT.

The assumption on the dispersion of the individual means, (µnt − µ̄n)2, is the same as
Gonçalves and White’s (2002) and Gonçalves and De Jong’s (2003) under their additional
requirement that the expected block length be o(

√
n). When the blocks are larger than

o(
√
n), a case that Gonçalves and White (2002) and Gonçalves and De Jong (2003) do not

consider, the dispersion must be smaller than they require. To see these implications of this
assumption, it is helpful to consider a simple example: a stochastic process with a single
break of size ∆n at time Tn:

µnt =

{
µ if t ≤ Tn
µ+ ∆n otherwise.

A small amount of algebra gives the relationship,

n∑
t=1

(µnt − µ̄n)2 = Tn(n− Tn)∆2
n/n ≡ Dn;

we have introduced Dn to minimize notation in the subsequent discussion. For the moving
and circular block bootstraps, Theorem 1’s Assumption 2 holds if Dn = o(n/M2

n), and the
same relationship must hold for the expected block length for the stationary bootstrap. If
∆n = ∆0 and Tn = πn for some constants ∆0 and π and for all n, then Dn ≈ ∆2

0 π(1− π)n
and Assumption 2 fails to hold. These values of ∆n and Tn describe a scenario where there
is a break large enough that π could be precisely estimated (as in Bai, 1994), but the break
is ignored and the bootstrap is applied to the entire dataset.

To see when Theorem 1’s Assumption 2 is satisfied, consider two other parametrizations
of this DGP. First, let ∆n = ∆0 and Tn = T0 for some finite T0. This mimics a setting where
a researcher intends to apply the bootstrap to a post-break sample, but mistakenly includes
a small number of pre-break observations as well. In this case, Assumption 2 holds as long
as Mn = o(

√
n). Similarly, suppose ∆n = ∆/

√
n and Tn = πn, which mimics a setting with

a moderate break with unknown timing. Then Dn ≈ ∆π(1− π) and Assumption 2 again
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holds as long as Mn = o(
√
n). Consequently, using block sizes of length o(

√
n) ensures that

Theorem 1’s assumptions on the dispersion of the µnt hold when there is a moderate amount
of heterogeneity—either because the sample is chosen to lie after a large estimated break
or because any breaks are smaller in magnitude and, consequently, potentially difficult to
detect. When the degree of heterogeneity is very small or nonexistent, so

∑
t(µnt − µ̄n)2

grows even slower, then larger block lengths can also satisfy this condition.
Theorem 1 relies on a general insight about the variance of the sample mean under

the bootstrap-induced distribution. It is well-known that a key step in proving the CLT
for arbitrary dependent processes is demonstrating that the squared elements converge to
a positive and finite limit; i.e. if {Znj ; j = 1, . . . , Jn} is a representative stochastic array,∑

j Z
2
nj →p σ2 is an important necessary condition for

∑
j Znj →d N(0, σ2). (See Section

3.2 of Hall and Heyde, 1980, for further discussion.) For martingale difference arrays, each
Znj is one of the original random variables Xnt (typically normalized by 1/

√
n), but for

other forms of dependence (NED or mixingale arrays, for example, as in De Jong, 1997)
each Znj is a contiguous block of the original random variables,

Znj = 1√
n

jMn∑
t=(j−1)Mn+1

(Xnt − µnt),

that adds up to the original summation (plus potentially a negligible residual) so
∑

j Znj =
(1/
√
n)
∑

t(Xnt−µnt)+op(1). In De Jong (1997), for example, the CLT for mixingale arrays
assumes that there exists a sequence of blocks such that

∑
j Z

2
nj converges i.p., and the

NED CLT establishes conditions under which such a Znj exists.
Our insight is that the expectation of squared blocks of the bootstrap process can be

expressed as a sequence of contiguous blocks of the original process, so the arguments that
establish convergence of the original squared blocks can be applied with only minor changes
to the bootstrapped blocks. Consider the moving blocks bootstrap,6 for example, and let

Z∗nj = 1√
n

jMn∑
t=(j−1)Mn+1

(X∗nt − X̄n).

Then, conditional on the data, the Z∗2nj are independent and can be expected to obey an LLN,
so
∑

j(Z
∗2
nj − E∗ Z∗2nj)→p 0 and the CLT for the bootstrapped array requires

∑
j E
∗ Z∗2nj to

converge to a positive and finite limit. But, since E∗ only averages over the starting point of
6To make this presentation as simple as possible, assume for now that n =MnJn exactly.
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each block, we have

E∗ Z∗2nj = 1
n

n−Mn∑
τ=0

(
1√
n

τ+Mn∑
t=τ+1

(Xnt − X̄n)
)2

= 1
n

Mn−1∑
τ0=0

Jn∑
j=1

(
1√
n

jMn+τ0∑
t=(j−1)Mn+τ0+1

(Xnt − X̄n)
)2

after grouping blocks separated by Mn periods. For each τ0, the summation can be expected
to converge in probability through the same arguments that were used to establish the CLT
for the original array.7,8 A similar representation is available for the circular and stationary
bootstraps.

In short, the basic approach that we use to prove Theorem 1 is based on a fundamental
connection between the second moments of the bootstrap process and the sum of squared
blocks of the original array. Even though the details of our proof rely on specific techniques
for NED arrays, this connection implies that block bootstraps are typically consistent when
the original dependent array obeys the CLT and the connection should be useful for proving
consistency of the bootstrap under other dependence conditions.

Theorem 1 can also be extended to give an FCLT using arguments from De Jong and
Davidson (2000). We show in Theorem 2 that the partial sum of the bootstrapped process
obeys an FCLT and can be used to derive critical values for other test statistics under the
same assumptions as Theorem 1. For this result, define the following partial sums,

Wn(γ) = 1√
n

bγnc∑
t=1

(Xnt − µ̄n) and W ∗n(γ) = 1√
n

bγnc∑
t=1

(X∗nt − E∗ X̄∗n).

Also let W denote standard Brownian motion and σW denote Brownian motion scaled by
the constant σ.

Theorem 2. Suppose that the conditions of Theorem 1 hold and let d be any distance
function that metricizes weak convergence. Then

Pr∗[d(W ∗n , σW ) > δ]→p 0 (5)

for any positive δ. If, in addition, supt=1,...,n |µnt − µ̄n| = o(1/
√
n) and

n−1
bγnc∑
s,t=1

cov(Xns, Xnt)→ σ2γ (6)

7Some of the details of the argument will typically need to change because the original CLT only requires
convergence for τ0 = 0, but these details are often incidental to the original argument.

8Lemmas 4 and 6 are particularly strong demonstrations of this argument.
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for all γ ∈ [0, 1], then
Pr[d(Wn, σW ) > δ]→ 0 (7)

for any positive δ.

If both (5) and (7) hold then the bootstrap can be used to approximate the distribution
of partial sums. Note that Theorem 2 imposes stronger assumptions for the original process
than for the bootstrapped process. Without (6), the partial sum of the original observations
converges to a transformed Brownian motion with a different covariance process. The
bootstrapped partial sum, on the other hand, always converges to standard (but potentially
scaled) Brownian motion because the resampling strategies ensure that the bootstrapped
process is globally covariance stationary.

If the original process does not satisfy (6), it would be necessary to normalize Wn with
a uniformly consistent estimator of the true covariance process of the series to make use of
these results. This would be the case if the variance permanently changes partway through
the series, for example. Other methods, such as the local block bootstrap (Dowla et al.,
2003; Paparoditis and Politis, 2002), may be able to capture this additional heterogeneity
with the bootstrap alone, but we do not pursue that possibility further.

The rest of the paper presents the mathematical proofs in detail.

A Proof of main results

For both results, we only present a proof for the stationary bootstrap. The moving blocks
and circular block bootstrap follow the same general argument but are simpler. We will
define some additional notation here before presenting the proofs.

First, the relevant probability infrastructure. Let (S,Ω,Pr) be a probability space and
define the sequence of sub-sigma-fields Ωn ⊂ Ω. Assume that each Xnt, Vnt, Mnj , and
unj is Ωn-measurable, with unj the uniform(1, . . . , n) random variables that designate the
start period of each bootstrap “block.” Also define the σ-field generated by the stationary
bootstrap’s block lengths alone,

Mn = σ(Jn,Mn1, . . . ,MnJn) (8)

and the conditional probability PrM(·) = Pr[· | Mn]. (And define Pr∗M(·) = Pr∗[· | Mn],
E∗M(·) = E∗(· | Mn), etc.) An important property is thatMn is independent of the Xnt’s,
Vnt’s, and unj ’s, so we can treat any Mnj and Jn terms as constants within EM(·) and
PrM[·] and integrate over the unconditional distributions of the other random variables.9

9A referee suggested the following clarification:

◦ E∗M(·) denotes the expectation over the uni, holding the sample and Mni fixed.

◦ EM(·) denotes the expectation over the sample and uni, holding only the Mni fixed.

◦ E∗(·) denotes the expectation over the uni and Mni, holding the sample fixed.

The same distinctions hold for the probabilities as well.
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This property is especially important because it allows us to use maximal inequalities and
other moment inequalities for mixingale arrays with only small modifications to construct
almost sure bounds on the conditional moments EM.

Also define

In(τ,m) =


{τ + 1, . . . , τ +m} if 0 ≤ τ ≤ n−m and 1 ≤ m
{1, . . . ,m− n+ τ} ∪ {τ + 1, . . . , n} if n−m < τ ≤ n and 1 ≤ m
∅ if m ≤ 0,

(9)

so each In(τ,m) defines a potential block of length m of the original observations that could
be chosen by the bootstrap.10 By convention, summations over empty index sets will be
considered equal to zero. Note that the In satisfy

In(Kn0,Mn1) = {1, . . . ,Kn1}
In(Kn1,Mn2) = {Kn1 + 1, . . . ,Kn2}

...
In(Kn,Jn−1,MnJn) = {Kn,Jn−1 + 1, . . . , n},

(10)

so In(Kn0,Mn1), . . . , In(Kn,Jn−1,MnJn) exactly partition the set {1, . . . , n} into consecutive
blocks with lengths determined by the bootstrap.

Let

Zn(τ,m) = 1√
n

∑
t∈In(τ,m)

(Xnt − X̄n) (11)

Z∗n(τ,m) = 1√
n

∑
t∈In(τ,m)

(X∗nt − X̄n) (12)

and

Z∗nj = Z∗n(Kn,j−1,Mnj) = 1√
n

Kn,j∑
t=Kn,j−1+1

(X∗nt − X̄n) (13)

and define the corresponding demeaned terms

Z ′n(τ,m) = 1√
n

∑
t∈In(τ,m)

(Xnt − µnt) (14)

Z ′∗n (τ,m) = 1√
n

∑
t∈In(τ,m)

(X∗nt − µ∗nt) (15)

10The index sets In(τ,m) are designed to “wrap around” and use the first observations when τ +m > n,
matching the defining aspect of the stationary and circular block bootstraps.
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and

Z ′∗nj = Z ′∗n (Kn,j−1,Mnj), (16)

where µ∗nt is the expected value of the observation in the original dataset corresponding to
the tth observation in the bootstrapped dataset. Further, define the filtration

Gnj = σ(Z∗n1, . . . , Z
∗
nj , Xn1, . . . , Xnn, Mn) (17)

so that {Z∗nj/σ∗n,Gnj} is a martingale difference array.
By construction, (see Equations (10) and (13))

1√
n

n∑
t=1

(X∗nt − X̄n) =

Jn∑
j=1

Z∗nj (18)

and

E∗M g(Z∗nj , . . . , Z
∗
nk) =

1

nk−j+1

n−1∑
τ1=0

· · ·
n−1∑

τk−j+1=0

g(Zn(τ1,Mnj), . . . , Zn(τk−j+1,Mnk)) (19)

almost surely for any function g such that both expressions are well-defined and any j ≤ k.
Equation (19) conditions on the lengths of each block, but averages over their starting
points.

Proof of Theorem 1

First we prove that

sup
x

∣∣Pr∗
[√
n(X̄∗n − X̄n)

/
σ∗n ≤ x

]
− Φ(x)

∣∣→p 0 (20)

where σ∗2n = nE∗(X̄∗n − X̄n)2. Rewrite
√
n(X̄∗n − X̄n) as in Equation (18), so

1√
n

n∑
t=1

(X∗nt − X̄n) =

Jn∑
j=1

Z∗nj

and {Z∗nj/σ∗n,Gnj} is a martingale difference array. Moreover,

Pr∗M

[ Jn∑
j=1

Z∗nj/σ
∗
n ≤ x

]
− Φ(x)→p 0, (21)
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for all x if σ∗2n →p σ2 (which ensures that σ∗2n is uniformly a.s. positive and holds by
Lemma 4) and the following two conditions hold for all positive ε:

Jn∑
j=1

E∗M
(
Z∗2nj 1{Z∗2nj > ε}

)
→p 0 (22)

and

Pr∗M

[ ∣∣∣ Jn∑
j=1

Z∗2nj − σ∗2n
∣∣∣ > ε

]
→p 0 (23)

since (22) and (23) ensure that Z∗nj/σ
∗
n obeys a martingale difference CLT (e.g. Hall and

Heyde, 1980, Theorem 3.3).11

For (23), Z∗nj and Z
∗
nk (when k 6= j) are conditionally uncorrelated given Xn1, . . . , Xnn,

andMn, which implies

Jn∑
j=1

Z∗2nj − σ∗2n =

Jn∑
j=1

(
Z∗2nj − (1/Jn)E∗

Jn∑
j=1

Z∗2nj

)
almost surely. But {

n
Mnj

(
Z∗2nj − (1/Jn)E∗

Jn∑
j=1

Z∗2nj

)
, Gnj

}
is a uniformly-integrable martingale difference array by Lemma 6 and satisfies the LLN (e.g.,
Davidson, 1994, Theorem 19.7). So this sum converges to zero in conditional probability,
proving (23).

To prove (22), it suffices (via the law of iterated expectations and Lemma 2) to show
that

Jn∑
j=1

EM
(
Z∗2nj 1{Z∗2nj > ε}

)
→p 0.

But note that

Jn∑
j=1

EM
(
Z∗2nj 1{Z∗2nj > ε}

)
≤ max

j=1,...,Jn
EM

(
n

Mnj
Z∗2nj 1{ n

Mnj
Z∗2nj > min

k=1,...,Jn

n
Mnk

ε}
)

11Conditional on Xn1, . . . , Xnn, Jn, andMn1, . . . ,Mn,Jn , the only stochastic components of
∑Jn
j=1 Z

∗
nj/σn

are the start periods of each block, which are discrete uniform(1, . . . , n) and are independent of all of the other
random variables in the information set used for conditioning. Consequently, Pr∗M is a regular conditional
probability and arguments like Hall and Heyde’s (1980) Theorem 3.3 apply without modification on this
probability measure. See also Section 23.2 of Van der Vaart (2000). Also note that Hall and Heyde’s Theorem
3.3 as stated imposes an additional restriction on the sigma-fields. However, as Hall and Heyde discuss on
pages 59 and 63–64, that condition is unnecessary here because σ∗2n is measurable with respect to all of the
Gnj .
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almost surely. Lemmas 1 and 6 imply that the RHS converges to zero in probability as
n→∞, proving (22). The Dominated Convergence Theorem and (21) then ensure that

Pr∗
[ Jn∑
j=1

Z∗nj/σ
∗
n ≤ x

]
− Φ(x)→p 0. (24)

(Also see Lemma 2.)
Lemma 4 implies that σ∗2n and σ̂∗2n both converge to σ2 in probability. This convergence

then implies that
Pr∗

[√
n(X̄∗n − X̄n) ≤ x

]
→p Φ(x/σ) (25)

and
Pr∗

[√
n(X̄∗n − X̄n)/σ̂∗n ≤ x

]
→p Φ(x) (26)

for any x. These results are sufficient for (2) and (3) since the limiting distribution is
continuous, a standard argument that proceeds as follows (see Van der Vaart, 2000, Lemma
2.11, for example). Let k be a finite integer and define xi = σΦ−1(i/k) for i = 0, . . . , k (so
x0 = −∞ and xk = +∞). For any x ∈ [xi, xi+1],

Pr∗
[√
n(X̄∗n − X̄n) ≤ x]− Φ(x/σ) ≤ Pr∗

[√
n(X̄∗n − X̄n) ≤ xi+1]− Φ(xi/σ)

= Pr∗
[√
n(X̄∗n − X̄n) ≤ xi+1]− Φ(xi+1/σ) + 1/k

and

Pr∗
[√
n(X̄∗n − X̄n) ≤ x]− Φ(x/σ) ≥ Pr∗

[√
n(X̄∗n − X̄n) ≤ xi]− Φ(xi+1/σ)

= Pr∗
[√
n(X̄∗n − X̄n) ≤ xi]− Φ(xi/σ)− 1/k

almost surely. Then

sup
x∈(−∞,+∞)

∣∣Pr∗
[√
n(X̄∗n − X̄n) ≤ x]− Φ(x/σ)

∣∣
≤ sup

i=0,...,k

∣∣Pr∗
[√
n(X̄∗n − X̄n) ≤ xi

]
− Φ(xi/σ)

∣∣+ 1/k

almost surely and (25) ensures that

sup
i=0,...,k

∣∣Pr∗
[√
n(X̄∗n − X̄n) ≤ xi

]
− Φ(xi/σ)

∣∣+ 1/k →p 1/k

for any finite k. Since k is arbitrary, (20) holds. Since Theorem 1’s assumptions ensure that
the original array obeys the CLT, (2) holds (De Jong, 1997, Theorem 2). A similar argument
applies to the asymptotic distribution of

√
n(X̄∗n − X̄n)/σ̂∗n, completing the proof.
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Proof of Theorem 2

We will only present proofs for the bootstrap results, since Theorem 3.1 of De Jong and
Davidson (2000) establishes the result for the partial sums of the original process. Theorem 1
implies that, for any fixed γ, W ∗n(γ) is asymptotically normal with limiting variance γσ2, so
we can assume that σ2 = 1 without loss of generality. Moreover, Lemma 2 shows that it is
sufficient to prove unconditional convergence, so we will establish Pr∗[d(W ∗n ,W ) > δ)]→p 0.
As in De Jong and Davidson (2000), this will hold if we show that W ∗n has asymptotically
independent increments and stochastic equicontinuity, namely

lim
δ→0

lim sup
n→∞

Pr[ sup
γ∈[0,1]

sup
γ′∈[γ−δ,γ+δ]

|W ∗n(γ)−W ∗n(γ′)| > ε] = 0 (27)

for any positive ε.
First observe that we can write W ∗n as

W ∗n(γ) = 1√
n

bγnc∑
t=1

(X∗nt − X̄n) =

bγJnc∑
j=1

Z∗nj + Z∗n(Kn,bγJnc, bγnc −Kn,bγJnc).

To show that the increments of this process are asymptotically independent, choose γ, γ′ ∈
[0, 1] and δ, δ′ > 0 so that δ + γ ≤ γ′. Since the blocks of W ∗n are conditionally uncorrelated
given X1n, . . . , Xnn, andMn, we have

E
[
(W ∗n(δ′ + γ′)−W ∗n(γ′))(W ∗n(δ + γ)−W ∗n(γ))

]
= 0

for large enough n if γ′ > γ + δ. If γ′ = γ + δ then

E
[
(W ∗n(δ′ + γ′)−W ∗n(γ′))(W ∗n(δ + γ)−W ∗n(γ))

]
=

EE∗M
{
− Z∗n(bγ′nc,Kn,dγ′Jne − bγ

′nc)Z∗n(Kn,b(γ+δ)Jnc, b(γ + δ)nc −Kn,b(γ+δ)Jnc))
}
.

But this second quantity can be bounded:

EE∗M
{
−Z∗n(bγ′nc,Kn,dγ′Jne − bγ

′nc)Z∗n(Kn,b(γ+δ)Jnc, b(γ + δ)nc −Kn,b(γ+δ)Jnc))
}

≤
{
EEM

[
Z∗n(bγ′nc,Kn,dγ′Jne − bγ

′nc)
]2

×
{
EEM Z∗n(Kn,b(γ+δ)Jnc, b(γ + δ)nc −Kn,b(γ+δ)Jnc))

2
}1/2

≤ C EMn,b(γ+δ)Jnc/n

for some constant C by Lemma 6. This term converges to zero by Lemma 1.
For (27), fix δ > 0 such that D = 2/δ is a positive integer and let γd = d/D for
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d = 0, . . . , D. Mimicking the argument in De Jong and Davidson (2000) gives the bounds

Pr[ sup
γ∈[0,1]

sup
γ′∈[γ−δ,γ+δ]

|W ∗n(γ)−W ∗n(γ′)| > ε]

≤ Pr[ sup
d=1,...,D

sup
γ∈[0,δ]

|W ∗n(γ + γd)−W ∗n(γd)| > ε/2]

≤ (4/ε2)
D∑
d=1

E[ sup
γ∈[0,δ]

|W ∗n(γ + γd)−W ∗n(γd)|2

× 1{ sup
γ∈[0,δ]

|W ∗n(γ + γd)−W ∗n(γd)|2 > ε2/4}]

≤ (4/ε2) max
d=1,...,D

E[ sup
γ∈[0,δ]

(1/δ)|W ∗n(γ + γd)−W ∗n(γd)|2

× 1{ sup
γ∈[0,δ]

(1/δ)|W ∗n(γ + γd)−W ∗n(γd)|2 > ε2/4δ}]

for large enough n. Lemma 6 implies that

sup
γ∈[0,δ]

(1/δ)|W ∗n(γ + γd)−W ∗n(γd)|2

is uniformly integrable, so

lim
δ→0

lim sup
n→∞

max
d=1,...,D

E[ sup
γ∈[0,δ]

(1/δ)|W ∗n(γ + γd)−W ∗n(γd)|2×

1{ sup
γ∈[0,δ]

(1/δ)|W ∗n(γ + γd)−W ∗n(γd)|2 > ε2/4δ}] = 0,

completing the proof.

B Supporting results

Lemma 1. Suppose that Mn1,Mn2, . . . are i.i.d. geometric random variables with success
parameter pn = cn−a with a, c ∈ (0, 1), and that `n = (pn log p−1n )−1 and define Jn so that∑Jn−1

i=1 Mni < n ≤
∑Jn

i=1Mni Then

1. maxi=1,...,bCnpncMni/n→p 0 for any positive C,

2. maxi=1,...,JnMni/n→p 0,

3. maxi=1,...,bCnpncMni/`
1+ε
n →p 0 as n→∞ for any positive ε and C,

4. maxi=1,...,JnMni/`
1+ε
n →p 0 as n→∞ for any positive ε, and

5. E
(∑Jn

i=1M
2
ni

)
= (2n− 1)/pn − n+ 1.

13



Proof of Lemma 1. To prove part 1, take any positive number x. Then

Pr
[

max
i=1,...,bCnpnc

Mni/n ≤ x
]

= (1− (1− pn)nx)bCnpnc = exp(−Cnpne−xnpn)× (1 + o(1))

since (1− pn)x/pn → e−x. In addition, npne−npn → 0 by assumption, so

Pr
[

max
i=1,...,bCnpnc

Mni/n ≤ x
]
→ exp(0) = 1.

Since x is arbitrary, maxi=1,...,bCnpncMni/n→p 0.
For part 2, take C to be an arbitrary constant strictly greater than one. For any x,

Pr
[

max
i=1,...,Jn

Mni > x
]
≤ Pr

[
max

i=1,...,bCnpnc
Mni > x or Jn > bCnpnc

]
≤ Pr

[
max

i=1,...,bCnpnc
Mni > x

]
+ Pr

[∑bCnpnc

i=1
Mni < n

]
The first term converges to zero by part 1 and the second term by the LLN.

For part 3, let xn = `1+εn x and note that

pn`
1+ε
n ≥ p−(ε−δ−εδ)n = c−(ε−δ−εδ)na(ε−δ−εδ) ≡ bna(ε−δ−εδ)

for any δ > 0 and large enough n. Choose δ small enough that ε > δ(1 + ε). Then

npn exp(−`1+εn pn) ≤ npn exp(−bna(ε−δ−εδ)) = cv
1−a

a(ε−δ−εδ)
n exp(−bvn)→ 0,

with vn = na(ε−δ−εδ). Consequently,

Pr[max
i
Mni/`

1+ε
n ≤ x]→ exp(0) = 1

as well. The proof of part 4 is the same as part 2, making the obvious substitutions.
For part 5, write

Jn∑
i=1

M2
ni =

Jn∑
i=1

(Mni − 1
pn

)2 + 2
pn

Jn∑
i=1

(Mni − 1
pn

) + Jn
p2n

(28)

so

E
( Jn∑
i=1

M2
ni

)
= E

( Jn∑
i=1

(Mni − 1
pn

)2
)

+ 2n
pn
− E Jn

p2n
.

Since Jn is a stopping time and
∑j

i=1(Mni − 1/pn) is a martingale, we have the equality
(Chow et al., 1965, Lemma 6)

E
( Jn∑
i=1

(Mni − 1
pn

)2
)

= E
( Jn∑
i=1

E((Mni − 1
pn

)2 |Mn1, . . . ,Mn,i−1)
)

= 1−pn
p2n

E Jn.

Finally, E Jn = (n− 1)pn + 1, completing the proof.
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Lemma 2. If {An} is a sequence of events in Ω then the following are equivalent:

Pr[An]→ 0, Pr∗[An]→ 0 in L1, and Pr∗M[An]→ 0 in L1.

Proof. Since Pr[An] = E |Pr∗[An]| = E |Pr∗M[An]| these conditions are equivalent by defini-
tion.

Lemma 3. Under the conditions of Theorem 1,

E
( Jn∑
j=1

( Knj∑
t=Kn,j−1+1

(µ∗nt − µ̄n)
)2)

= o(npn) (29)

and µ̄∗n = E∗ µ̄∗n + oL2(n−1/2).

Proof. The second result, on µ̄∗n, is an immediate implication of Equation (29). To show (29),
observe that

E
( Jn∑
j=1

( Knj∑
t=Kn,j−1+1

(µ∗nt − µ̄n)
)2)

=

= E
( Jn∑
j=1

∣∣ Knj∑
s,t=Kn,j−1+1

E
(
(µ∗ns − µ̄n)(µ∗nt − µ̄n) | Mn

)∣∣)

≤ E
( Jn∑
j=1

n∑
k,l=−n

1
n

n−1∑
τ=0

∣∣(µn,τ+k − µ̄n)(µn,τ+l − µ̄n) 1{τ + k, τ + l ∈ In(τ,Mnj)}
∣∣)

≤ E
( Jn∑
j=1

[ n∑
k=−n

(
1
n

n−1∑
τ=0

(µn,τ+k − µ̄n)21{τ + k ∈ In(τ,Mnj)}
)1/2]2)

= E
( Jn∑
j=1

M2
nj

∣∣∣ 1n n−1∑
τ=0

(µn,τ − µ̄n)2
∣∣∣)

= o(npn).

The first equality follows from the law of iterated expectations. The first inequality exploits
the fact that the conditional expectation in the previous expression averages over the block’s
starting period but treats every other random variable as constant. (The argument of the
indicator function and the indices of the summations are deliberately chosen to accommodate
blocks that include observations from both the beginning and the end of the series.) The
second inequality is an application of the Cauchy-Schwarz inequality to the inner-most
summation. The next equality holds because the summation

n−1∑
τ=0

(µn,τ+k − µ̄n)21{τ + k ∈ In(τ,Mnj)}
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is zero for all but Mnj values of k and is a nonzero constant for those k. The last line holds
by Lemma 1 and assumption.

Lemma 4. Under the conditions of Theorem 1,

Jn∑
j=1

(Z∗2nj − E∗M Z∗2nj)→p 0, (30)

Jn∑
j=1

(Z∗2nj − Z ′∗2nj )→p 0, (31)

and Pr∗[|σ∗2n − σ2| > ε]→p 0. If, in addition, X̄∗n − X̄n = Op(1/
√
n) then Pr∗[|σ̂∗2n − σ2| >

ε]→p 0.

Proof. For (30), (Z∗2nj − E∗M Z∗2nj) · (n/Mnj) is a uniformly integrable martingale difference
array, by Lemma 6, and satisfies the LLN. (See Davidson, 1994, Theorem 19.7.) For (31),
observe that∣∣∣ Jn∑

j=1

(Z∗2nj − Z ′∗2nj )
∣∣∣ =

∣∣∣ Jn∑
j=1

(
Z∗nj −

[
Z∗nj + 1√

n

Knj∑
t=Kn,j−1+1

(X̄n − µ∗nt)
]2)∣∣∣

≤ 2
( Jn∑
j=1

Z∗2nj

)1/2(
1
n

Jn∑
j=1

( Knj∑
t=Kn,j−1+1

(µ∗nt − X̄n)
)2)1/2

+ 1
n

Jn∑
j=1

( Knj∑
t=Kn,j−1+1

(µ∗nt − X̄n)
)2

from the Cauchy-Schwarz inequality. Lemma 5, along with (19) and (30), implies that∑
j Z
∗2
nj = Op(1). Lemma 3 implies that

1
n

Jn∑
j=1

( Knj∑
t=Kn,j−1+1

(µ∗nt − X̄n)
)2
→p 0

since X̄ itself obeys the LLN.
To show that σ∗2n converges, we can write

σ∗2n − σ2 = E∗
{ Jn∑
j=1

(Z∗2nj − Z ′∗2nj )
}

+ 1
n

n−1∑
τ=0

E∗
{ Jn∑
j=1

(
Z ′n(τ,Mnj)

2 − EM Z ′n(τ,Mnj)
2
)}

+ 1
n

n−1∑
τ=0

E∗
{ Jn∑
j=1

EM Z ′n(τ,Mnj)
2 − σ2

}
. (32)
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Uniform integrability ensures that the convergence in (30) holds in L1 as well and Lemma 2
then implies that the first term in (32) converges to zero in probability. Lemma 5 proves
that the second and third summation converge to zero in probability.

Next,

σ̂∗2n − σ∗2n =

Jn∑
j=1

(
Z∗nj + (Mnj/

√
n)(X̄n − X̄∗n)

)2 − E∗
Jn∑
j=1

Z∗2nj

so, in light of the previous arguments, σ̂∗2n →p σ2 if

(X̄n − X̄∗n)2
Jn∑
j=1

M2
nj/n→p 0, (33)

which holds by Lemma 1 and assumption.

Lemma 5. If the conditions of Theorem 1 hold then

Pr
[∣∣∣ 1n n−1∑

τ=0

Jn∑
j=1

[
Z ′n(τ,Mnj)

2 − EM Z ′n(τ,Mnj)
2
]∣∣∣ > ε

]
→ 0 (34)

and

Pr
[∣∣∣ 1n n−1∑

τ=0

Jn∑
j=1

EM Z ′n(τ,Mnj)
2 − σ2

∣∣∣ > ε
]
→ 0. (35)

For these two proofs, let `n = (pn log p−1n )−1 and let Lnj = bn/Mnjc; `n represents a smaller
block size that satisfies `nJn/n→p 0.

Proof of (34). We can express this summation as

1
n

n−1∑
τ=0

Jn∑
j=1

{
Z ′n(τ,Mnj)

2 − EM Z ′n(τ,Mnj)
2
}

= 1
n

Jn∑
j=1

Mnj−1∑
τ=0

Lnj−1∑
i=0

{[
Z ′n(τ + iMnj ,Mnj − `n) + Z ′n(τ + (i+ 1)Mnj − `n, `n)

]2
− EM

[
Z ′n(τ + iMnj ,Mnj − `n) + Z ′n(τ + (i+ 1)Mnj − `n, `n)

]2}
+ 1

n

Jn∑
j=1

n−1∑
τ=MnjLnj

{
Z ′n(τ,Mnj)

2 − EM Z ′n(τ,Mnj)
2
}

(36)
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almost surely. By Lemma 7 (Equation 44), for any δ > 0 there exist positive C and ε such
that∥∥∥ 1
n

Jn∑
j=1

Mnj−1∑
τ=0

Lnj−1∑
i=0

{
Z ′n(τ + iMnj ,Mnj − `n)2 − EM

(
Z ′n(τ + iMnj ,Mnj − `n)2

)}∥∥∥
1

≤ E 1
n

Jn∑
j=1

Mnj−1∑
τ=0

EM
∣∣∣ Lnj−1∑

i=0

{
Z ′n(τ + iMnj ,Mnj − `n)2 − EM

(
Z ′n(τ + iMnj ,Mnj − `n)2

)}∣∣∣
≤ E

(
1
n

Jn∑
j=1

Mnj−1∑
τ=0

(
2δ + C

Mnj

n1/2`1/2+ε

))
for large enough n, which converges to 2δ by Lemma 1. Lemma 8 ensures that there exists a
value C (possibly different from the value above) such that

E
(

1
n

Jn∑
j=1

Mnj−1∑
τ=0

Lnj−1∑
i=0

Z ′n(τ + (i+ 1)Mnj − `n, `n)2
)

= EEM
(

1
n

Jn∑
j=1

Mnj−1∑
τ=0

Lnj−1∑
i=0

Z ′n(τ + (i+ 1)Mnj − `n, `n)2
)

≤ C E
( Jn∑
j=1

Lnj`nMnj/n
2
)

and

E
(

1
n

Jn∑
j=1

n−1∑
τ=MnjLnj

Z ′n(τ,Mnj)
2
)
≤ C E

( Jn∑
j=1

M2
nj/n

2
)

for large enough n,12 both of which converge to zero in L1 as n→∞ by Lemma 1. These
three convergence results imply that the RHS of (36) converges to zero in probability,
completing the proof.

Proof of (35). After using similar arguments to the previous part of the proof, the conclusion
holds if

1
n

Jn∑
j=1

Mnj−1∑
τ=0

Lnj−1∑
i=0

EM Z ′n(τ + iMnj ,Mnj − `n)2 →p σ2,

12Lemma 7 and 8 are stated for the unconditional expectation, which may cause some confusion here.
Note that Mnj is measurable with respect toMn and is treated the same as the constant m in the statement
of these Lemmas. The other random variables in these expressions are independent of Mn. So the only
effect of conditioning onMn is to prevent integration over the distributions of the Mnj and the expectation
otherwise behaves exactly like the unconditional expectation.
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which is a direct implication of Lemma 7.13

Lemma 6. Under the conditions of Theorem 1, for any positive ε and ε′ there exist constants
C0 and n0 such that

Pr
[

sup
τ=0,...,n−1
m′=1,...,n

EM
(

max
m=1,...,m′

(nZ∗n(τ,m)2/m′)

× 1
{

max
m=1,...,m′

nZ∗n(τ,m)2/m′ > C
})

> ε
]
< ε′ (37)

for all n > n0 and C > C0. Moreover, the families of random variables
{maxm=1,...,m′ Z

∗
n(τ,m)2n/m′; τ,m′, n} and {Z∗2njn/Mnj ; τ, j, n} are uniformly integrable for

n larger than some threshold n0.

Proof. We will only present a proof of (37). Uniform integrability of Z∗2nj n/Mnj and
{maxm=1,...,m′ Z

∗
n(τ,m)2n/m′; τ,m′, n} follow essentially the same arguments, replacing

the conditional with the unconditional expectation, and are omitted.
For any x, define J(x) to be the block index such that Kn,J(x)−1 < x ≤ Kn,J(x). For any

m, we can decompose Z∗n(τ,m) into a summation of conditionally independent blocks

Z∗n(τ,m) = Z∗n(τ,Kn,J(τ) − τ) +

J(τ+m)−1∑
j=J(τ)+1

Z∗nj

+ Z∗n(Kn,J(τ+m)−1,m−Kn,J(τ+m)−1). (38)

Since the distribution of Z∗n(τ,m) does not depend on τ , (37) holds if, for any positive ε
and ε′, there exist n0 and C0 such that

Pr
[

max
τ=0,...,n−1

EM
(
( max
m=1,...,Kn,J(τ)−τ

nZ∗n(τ,m)2/Mn,J(τ))

× 1{ max
m=1,...,Kn,J(τ)−τ

nZ∗n(τ,m)2/Mn,J(τ) > C}
)
> ε
]
< ε′, (39)

Pr
[

max
m′=1,...,n

EM
(
n
m′ max

k=1,...,J(m′)

∣∣∣ k∑
j=1

Z∗nj

∣∣∣2
× 1

{
n
m′ max

k=1,...,J(m′)

∣∣∣ k∑
j=1

Z∗nj

∣∣∣2 > C
})

> ε
]
< ε′ (40)

13The discussion in Footnote 12 applies here as well.
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and

Pr
[

max
j=1,...,Jn

EM
(
( max
m=1,...,Mnj

nZ∗n(Kn,j−1,m)2/Mnj)

× 1{ max
m=1,...,Mnj

nZ∗n(Kn,j−1,m)2/Mnj > C}
)
> ε
]
< ε′, (41)

for all n > n0 and C > C0.
For (41), use the equality

Zn(τ,m) = Z ′n(τ,m) + 1√
n

∑
t∈In(τ,m)

(µnt − µ̄n)− (m/n)Z ′n(τ, n), (42)

to get the upper bound

EM
(
( max
m=1,...,Mnj

nZ∗n(Kn,j−1,m)2/Mnj) 1{ max
m=1,...,Mnj

nZ∗n(Kn,j−1,m)2/Mnj > C}
)

≤ 3EM
(
( max
m=1,...,Mnj

nZ ′n(un,m)2/Mnj) 1{ max
m=1,...,Mnj

nZ ′n(un,m)2/Mnj > C/3}
)

+ 3EM
(
(MnjZ

′
n(0, n)2/n) 1{MnjZ

′
n(0, n)2/n > C/3}

)
+ 3

Mnj

n

n∑
t=1

(µnt − µ̄n)2,

where un has the discrete uniform distribution over 0, . . . , n− 1. Lemmas 1, 3, and 8 ensure
that there exist n0 and C0 such that, for all n > n0 and C > C0,

EM
(
( max
m=1,...,Mnj

nZ ′n(un,m)2/Mnj) 1{ max
m=1,...,Mnj

nZ ′n(un,m)2/Mnj > C/3}
)
< ε/9

and
EM

(
(Mnj Z

′
n(0, n)2/n) 1{Mnj Z

′
n(0, n)2/n > C/3}

)
< ε/9

for all j = 1, . . . , Jn − 1 almost surely, and

Pr
[

max
j=1,...,Jn−1

Mnj

n

n∑
t=1

(µnt − µ̄n)2 > ε/9
]
< ε′/3,

proving (41). The proof of (39) is essentially the same.
The proof of (40) follows a streamlined version of McLeish (1975, Lemma 6.5) and

McLeish (1977, Lemma 3.5). (Those results are presented as Theorem 16.13 in Davidson,
1994, and are largely reproduced in the proof of this paper’s Lemma 8.)

Separate Z∗nj into two components,

U∗nj = ( n
m′ )

1/2 Z∗nj 1{ n
Mnj

Z∗2nj > C ′} − ( n
m′ )

1/2 E∗M(Z∗nj 1{ n
Mnj

Z∗2nj > C ′})

Y ∗nj = ( n
m′ )

1/2 Z∗nj 1{ n
Mnj

Z∗2nj ≤ C ′} − ( n
m′ )

1/2 E∗M(Z∗nj 1{ n
Mnj

Z∗2nj ≤ C ′}),
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making

Z∗nj = (m
′

n )1/2U∗nj + (m
′

n )1/2Y ∗nj

where C ′ is a constant that will be constrained later in the proof. For any C, τ , m′, and n,
standard probabilistic inequalities (e.g. Theorem 2.29 of Davidson, 1994, along with maximal
inequalities for martingale difference sequences) imply that

EM
(
n
m′ max

k=1,...,J(m′)

∣∣∣ k∑
j=1

Z∗nj

∣∣∣2 1
{
n
m′ max

k=1,...,J(m′)

∣∣∣ k∑
j=1

Z∗nj

∣∣∣2 > C
})
≤

6
C

44

34
EM

∣∣∣ J(m′)∑
j=1

Y ∗nj

∣∣∣4 + 24EM
∣∣∣ J(m′)∑
j=1

U∗nj

∣∣∣2 (43)

almost surely.
The first term on the RHS of (43) can be expanded recursively to give the following

upper bound

1
C EM

∣∣∣ J(m′)∑
j=1

Y ∗nj

∣∣∣4 ≤ EM
[
1
C E∗M

∣∣∣ J(m′)−1∑
j=1

Y ∗nj

∣∣∣4 + 6
C E∗M

(
Y ∗2n,J(m′)

∣∣∣ J(m′)−1∑
j=1

Y ∗nj

∣∣∣2)

+ 4
C E∗M

∣∣∣Y ∗3n,J(m′) J(m
′)−1∑

j=1

Y ∗nj

∣∣∣+ 1
C E∗M|Y ∗4n,J(m′)|

]

≤ 1
C E∗M

( J(m′)−1∑
j=1

Y ∗nj

)4
+ 1

C (4C
′

m′ )
2
(

6Mn,J(m′)

J(m′)−1∑
j=1

Mnj

+ 4M
3/2
n,J(m′)

[ J(m′)−1∑
j=1

Mn,J(m′)

]1/2
+M2

n,J(m′)

)

≤ 1
C (4C

′

m′ )
2

J(m′)∑
j=2

(
6Mnj

j−1∑
k=1

Mnk + 4M
3/2
nj

[ j−1∑
k=1

Mnk

]1/2
+M2

nj

)
≤ 11

C

Kn,J(m′)
m′ (4C ′)2

with all inequalities holding almost surely. The second to last inequality holds by recursively
applying the previous two inequalities, first for J(m′)− 1, then for J(m′)− 2, etc.

The second term on the RHS of (43) satisfies

EM
∣∣∣ J(m′)∑
j=1

U∗nj

∣∣∣2 =

J(m′)∑
j=1

EM|U∗nj |2

≤ max
j=1,...,J(m′)

EM
(

n
Mnj

Z∗2nj 1{ n
Mnj

Z∗2nj > C ′}
)
.
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Equation (41) ensures that we can choose C ′ and n′ such that

Pr
[

max
j=1,...,J(m′)

EM
(

n
Mnj

Z∗2nj 1{ n
Mnj

Z∗2nj > C} > ε/2
)]
< ε′/2

for all n > n′ and C > C ′. We can then choose n0 > n′ and C0 > C ′ such that

Pr
[

max
m′=1,...,n

11
C

Kn,J(m′)
m′ (4C ′)2 > ε/2

]
< ε′/2

for all n > n0 and C > C0, completing the proof.

Lemma 7. Suppose the conditions of Theorem 1 hold. For any positive δ, there exist positive
and finite constants C, n0, and ε such that for all n > n0, m = 1, . . . , n, τ = 0, . . . ,m, and
` = 1, . . . ,m− 1:

E
∣∣∣ bn/mc−1∑

i=0

[
Z ′n(τ + im,m− `)2 − E

(
Z ′n(τ + im,m− `)2

)]∣∣∣
≤ 2δ + C ·

(
m
n

)1/2( m
`1+ε

)1/2
. (44)

Also, there exists a constant C and a finite function D(x) such that D(x)→ 0 as x→∞
and, for large enough n,

E
∣∣∣ bn/mc−1∑

i=0

E(Z ′n(τ + im,m− `)2 − σ2
∣∣∣ ≤ C D(`). (45)

Results (44) and (45) are direct extensions of De Jong’s (1997) Lemmas 5 and 4,
respectively, replacing De Jong’s implicit use of inequalities with explicit inequalities. Since
the proof follows De Jong’s very closely, it is presented in a supplementary online appendix.14

Note that these results apply immediately to the conditional expectation EM because
the block lengths Mjn do not appear in (44) and (45) and are independent of all of the
random variables used for these bounds.

Lemma 8. Under the conditions of Theorem 1,

lim
C→0

lim sup
n→∞

sup
τ=0,...,n−1
m′=1,...,n

E
((

max
m=1,...,m′

Z ′n(τ,m)2n/m′
)

× 1{ max
m=1,...,m′

Z ′n(τ,m)2n/m′ > C}
)
) = 0. (46)

See the supplementary online appendix for the proof of (46), which follows McLeish
(1975, Lemma 6.5) and McLeish (1977, Lemma 3.5) almost exactly and is also presented as
Theorem 16.13 in Davidson (1994). The same comment that follows Lemma 7 applies here
as well: the bounds apply equally well to EM.

14Supplementary material to this article is provided in “Supplementary Appendix for ‘Block bootstrap
consistency under weak assumptions,’” which is available at Cambridge Journals Online (journals.cambridge.
org/ect).
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